
UNIVERSITÀ DI PISA

Dipartimento di informatica

PH.D. THESIS

COMPRESSION TECHNIQUES FOR

LARGE GRAPHS:
THEORY AND PRACTICE

Luca Versari

SUPERVISOR

Roberto Grossi
Università di Pisa

REFEREE REFEREE

Travis Gagie Daniel Lemire
Dalhousie University Université TÉLUQ

REFEREE

Kijung Shin
KAIST





ABSTRACT

In today’s world, compression is a fundamental technique to let our computers
deal in an efficient manner with the massive amount of available information.
Graphs, and in particular web and social graphs, have been growing exponentially
larger in the last years, increasing the necessity of having efficient compressed
representations for them. In this thesis, we study the compression of graphs from
both a theoretical and a practical point of view. We provide a new technique to
achieve better compression of sequences of large integers, showing its theoretical
and practical properties, as well as new techniques for practical context modeling
in large context spaces. We conduct a theoretical analysis of the compression of
various models of graphs, showing that theoretically optimal compression for each
of those models can be achieved in polynomial time. Finally, we show how to apply
the proposed techniques to practical graph compression to obtain a new scheme
that achieves significant size savings over the state of the art, while still allowing
efficient compression and decompression algorithms.



ACKNOWLEDGEMENTS

During the years of my PhD, I worked with many fantastic people, both in the
University of Pisa and at Google, and I enjoyed the support of my family and many
other people whom I did not work with. Thanks to everyone for their friendship,
the interesting discussions, and the fun moments! Our interactions helped making
my life a bit better every day.

Among those people, special thanks go to those who helped me improve this
thesis; in no particular order, Alessio, Roberto, Thomas, Jyrki, Iulia, Robert, Jon.

I also wish to thank the reviewers for their useful comments and feedback.



CONTENTS

Contents 3

1 Introduction 7
1.1 First part: general-purpose compression . . . . . . . . . . . . . . . . . . . 8
1.2 Second part: graph compression . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Published material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I General-purpose compression 13

2 Compression concepts and techniques 15
2.1 Entropy of a random variable . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Entropy of a text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Integer coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Unary coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Rice coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Elias γ coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Elias δ coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 ζ codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.6 π codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Prefix coding and Huffman coding . . . . . . . . . . . . . . . . . . 22
2.4.2 Arithmetic coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Asymmetric Numeral Systems . . . . . . . . . . . . . . . . . . . . 24

2.5 Higher order entropy and entropy coding . . . . . . . . . . . . . . . . . . 25

3 Hybrid Integer Encoding 27

3



CONTENTS

3.1 Encoding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Novel techniques for high-order entropy coding 43
4.1 Context clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Heuristic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Decision-tree-based context modeling . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Optimal algorithm for n = 1, k > nt . . . . . . . . . . . . . . . . . 49
4.2.2 Optimal algorithm for nt = 1 . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Heuristic algorithm in pseudolinear time for n = 1 . . . . . . . . 51
4.2.4 Heuristic for the general case . . . . . . . . . . . . . . . . . . . . . 52

II Graph compression 55

5 Common techniques for graph compression 57
5.1 Raw link encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Grammar- and dictionary-based . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Class-tailored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Compression of trees . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Tree-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Copying models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.1 Brief summary of WebGraph . . . . . . . . . . . . . . . . . . . . . 64
5.6 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Graph compression in theory 69
6.1 Erdös-Rényi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Stochastic Block Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Uniform attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Copy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5 Preferential attachment (Barabási-Albert) . . . . . . . . . . . . . . . . . . 76
6.6 Simplified Copy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Graph compression in practice 81
7.1 Encoding Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1.1 Negative integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4



Contents

7.2 Graph compression in Zuckerli . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.1 Context management . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.2 Choice of reference list and chain . . . . . . . . . . . . . . . . . . . 85
7.2.3 Full decompression . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.4 List decompression . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.5 Approximation guarantee . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.6 Details on computing the optimal sub-forest of F . . . . . . . . . 87

7.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.2 Parameter Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.3 Effect of Approximation Algorithm and Context Modeling . . . . 92
7.3.4 Compression Results and Resource Usage . . . . . . . . . . . . . 93
7.3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4 Further improvements on the Zuckerli scheme . . . . . . . . . . . . . . . 100
7.4.1 Tree-based context modeling . . . . . . . . . . . . . . . . . . . . . 100
7.4.2 Reference selection algorithm . . . . . . . . . . . . . . . . . . . . . 101
7.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusions 105
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 107

5





C
H

A
P

T
E

R

1
INTRODUCTION

DATA COMPRESSION is a process through which the number of bits used to
represent information can be reduced. In today’s world, it is an incredibly

important topic both for practical and theoretical pursuits.

Compression can be either lossless, when it allows to reconstruct the input exactly, or
lossy, when it only allows to reconstruct an approximation of the input.

From the practical point of view, most of the services that we use today on the Internet
would be significantly slower, if not entirely unfeasible, without using compression.
Lossless compression, which is used by more than half the websites of the world [47],
allows a 2− 3x reduction of the amount of bytes for transmitting text content, layout and
behaviour of webpages. Lossy compression of images achieves typically 10x savings
over uncompressed data, and lossy compression of video can be even up to 1000x
more efficient than uncompressed data, even with low information loss. It is thanks to
compression, together with the improved processing power and connectivity that we
enjoy in more modern times, that the Internet as we know it can exist.

From a theoretical point of view, compression is tightly tied with information theory,
which tries to quantify the complexity of a given system. It is also for this reason that the
capability of achieving good compression ratios on a given source has been connected
with our understanding of the source, and the ability to compress of a system has been
used as a measure of its degree of intelligence [73]. This connection between compression

7



1. INTRODUCTION

and understanding has also been exploited in perhaps unexpected ways, such as as
part of a measure of level of consciousness of patients in a coma or under the effects of
medication [31].

On the other hand, graphs are one of the most versatile structures in mathematics
and computer science, finding extremely varied applications, from answering questions
on afternoon walks in Prussian towns [45] to building ranking algorithms for search
engines [81] and doing community detection [37, 38].

Graph theory is also an important topic in theoretical research, being a source of
multiple deep results like a quasipolynomial time algorithm for graph isomorphism [9]
and the famous graph-minor theorem [90].

Given the importance of both those topics, the interest in compression of graphs is
self-explanatory. In this thesis, we will focus on the compression of large graphs:

• From a theoretical point of view, analyses will be conducted keeping in mind the
asymptotic behaviour of the systems in analysis, and will be focused on aspects of
the theory that are relevant to large real-world networks.

• From a practical point of view, the focus will be mostly on graph classes with hun-
dreds of millions or billions of edges, such as web graphs and social networks [69].

After this chapter, this thesis is divided in two parts. The rest of this chapter contains
an overview of the structure of those two parts, as well as notation and definitions that
are used throughout the thesis.

1.1 First part: general-purpose compression

The first part of this thesis presents general techniques for data compression. These
techniques will then be used in the second part of the thesis, and more specifically
in Chapter 7, to obtain a new graph compression method that significantly improves the
state of the art.

Chapter 2 provides an overview of some known techniques for general-purpose
compression.

Chapter 3 introduces a novel integer coding scheme that uses both entropy coding
and raw bits, also giving an analysis of its efficiency on common distributions and a
comparison with other known techniques.

Chapter 4 introduces novel techniques to achieve practical higher-order entropy
coding.

8



1.2. Second part: graph compression

The techniques of Chapters 3 and 4 have been partially developed by the author
during the development of JPEG XL [2] and partially for this thesis.

1.2 Second part: graph compression

This part of the thesis is dedicated to, specifically, compression of graphs. It provides
both theoretical and practical novel results in the topic of graph compression.

Chapter 5 provides an overview of the state of the art of encoding schemes for large
graphs.

Chapter 6 contains the main theoretical results on graph compression in this thesis,
providing a novel theoretical analysis of various graph models. In particular, it gives
lower bounds on the compressed size of graphs belonging to a specific model and
polynomial-time compression algorithms that match, or almost match, the lower bounds.
Special focus is given to models for sparse graphs. While the results of this chapter
are interesting from a theoretical point of view, they are not necessary for the practical
results in Chapter 7.

Chapter 7 applies the techniques in Chapters 3 and 4 to graph compression, develop-
ing a new compression scheme that achieves significant density improvements compared
to the state of the art. Part of the results in this chapter have been published in [98];
Section 7.4 provides a compression scheme that achieves some further improvements
compared to [98], at the cost of an increase in encoding and decoding time.

1.3 Notation and definitions

We denote the base-2 logarithm of a positive number x as log x, and its natural logarithm
as ln x, unless otherwise noted. We will assume 0 log 0 = 0 and 00 = 1 for convenience
of notation.

We will refer multiple times to two families of probability distributions on natural
numbers: the geometric and the Zipf distribution. We remark that the Zipf distribution
is usually defined on a range of positive integers, i.e. {1, . . . , n}, while the distribution
defined on N+ is usually denoted as the Zeta distribution. We will use the two terms
interchangeably.

Differently from usual, we define the geometric distribution as the distribution of
the number of failures of a sequence of independent trials each with a probability p of
failing before the first success. It follows that the probability of an integer k is given by
pk(1− p).

9



1. INTRODUCTION

A Zipf distribution with parameter α is a distribution where the probability of an
integer k is proportional to k−α. To ensure that the probabilities sum to 1, we normalize
them using the Riemann ζ function, defined for all α > 1:

ζ(α) =
∞

∑
n=1

1
nα

The probability of a given integer k under a Zipf distribution with parameter α is
then k−αζ(α)−1.

A graph G is a pair (V, E) of vertices (or nodes) and edges, with E ⊆ V ×V. We will
typically assume V to be of the form {1, . . . , n}. The degree of a node δv is the number
of edges that v belongs to. A sequence of distinct nodes n1, . . . , nk is a (simple) path if
(ni, ni+1) ∈ E for all i.

A graph can be directed or undirected: in an undirected graph, (u, v) ∈ E⇔ (v, u) ∈
E; undirected edges are also denoted as {u, v}. If a graph is directed, we make the
distinction of in-degree (δ−v ) and out-degree (δ+v ), the number of edges of which a node is
respectively the first or the second element.

The neighbours of a node v in an undirected graph, denoted by N(v), are all the
nodes that share an edge with v. It follows that |N(v)| = δv; in-neighbours (N−(v)) and
out-neighbours (N+(v)) are defined in a similar way for directed graphs. An adjacency list
for a node is the list of its (out-)neighbours.

A graph is connected if there is a path between any two nodes. A connected component
of a graph is a maximal subset of nodes that is connected. An undirected graph is called
a tree if there is a unique path between any two nodes. Any tree with n nodes has exactly
n− 1 edges. Nodes of degree 1 in a tree are called leaves.

A tree may be rooted in a node, called the root. In a rooted tree, we implicitly assume
edges to be oriented away from the root, and in that case we define, for any edge (u, v),
u to be the parent of v and v to be a child of u.

A forest if its connected components are trees; equivalently, if each pair of edges
has at most one path between them. It follows that the number of edges of a forest of n
vertices is at most n− 1.

When the graph is clear from context and unless specified otherwise, we shall denote
with n the number of nodes of a graph, and with m its number of edges.

When referring to graph representations, we will consider the following scenarios
for access patterns.

• Full decompression: Decompress the representation entirely, obtaining the stan-
dard representation of G.

10



1.4. Published material

• List decompression: For any given node u ∈ [n], decompress incrementally the
adjacency list of u, while keeping the rest compressed.

• Edge queries: For any given pair of nodes (u, v), determine whether (u, v) ∈ E or
(u, v) 6∈ E.

The above scenarios are listed from least to most flexible: indeed, it is always
possible to support list decompression using n edge queries per list (although faster
implementations might be possible), and it is possible to support full decompression
using n list decompressions.

1.4 Published material

During the course of the PhD, more work was done that is not as tightly related to the
topic of this thesis. For completeness, a full list of publications is reported here:

• Efficient algorithms for listing k disjoint st-paths in graphs. R. Grossi, A. Marino,
L. Versari - Latin American Symposium on Theoretical Informatics, 2018

• Tight Lower Bounds for the Number of Inclusion-Minimal st-Cuts. A. Conte,
R. Grossi, A. Marino, R. Rizzi, T. Uno, L. Versari - International Workshop on
Graph-Theoretic Concepts in Computer Science, 2018

• Finding maximal common subgraphs via time-space efficient reverse search. A.
Conte, R. Grossi, A. Marino, L. Versari - International Computing and Combina-
torics Conference, 2018

• D2K: scalable community detection in massive networks via small-diameter k-
plexes. A. Conte, T. De Matteis, D. De Sensi, R. Grossi, A. Marino, L. Versari -
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018

• Listing subgraphs by Cartesian decomposition. A. Conte, R. Grossi, A. Marino,
R. Rizzi, L. Versari - International Symposium on Mathematical Foundations of
Computer Science, 2018

• Discovering k-Trusses in Large-Scale Networks. A. Conte, D. De Sensi, R. Grossi,
A. Marino, L. Versari. IEEE High Performance extreme Computing Conference
(HPEC), 2018

11



1. INTRODUCTION

• Listing maximal subgraphs satisfying strongly accessible properties. A. Conte, R.
Grossi, A. Marino, L. Versari. SIAM Journal on Discrete Mathematics 33, 2019

• JPEG XL next-generation image compression architecture and coding tools. J.
Alakuijala, R. van Asseldonk, S. Boukortt, M. Bruse, IM. Coms, a, M. Firsching, T.
Fischbacher, E. Kliuchnikov, S. Gomez, R. Obryk, K. Potempa, A. Rhatushnyak, J.
Sneyers, Z. Szabadka, L. Vandevenne, L. Versari, J. Wassenberg - Applications of
Digital Image Processing XLII, 2019

• A fast discovery algorithm for large common connected induced subgraphs. A.
Conte, R. Grossi, A. Marino, L. Tattini, L. Versari - Discrete Applied Mathematics
268, 2019

• Sublinear-Space and Bounded-Delay Algorithms for Maximal Clique Enumeration
in Graphs A. Conte, R. Grossi, A. Marino, L. Versari - Algorithmica, 2020

• Benchmarking JPEG XL image compression. J. Alakuijala, S. Boukortt, T. Ebrahimi,
E. Kliuchnikov, J. Sneyers, E. Upenik, L. Vandevenne, L. Versari, J. Wassenberg -
Optics, Photonics and Digital Technologies for Imaging Applications VI, 2020

• Temporal coding in spiking neural networks with alpha synaptic function. IM.
Comsa, T. Fischbacher, K. Potempa, A. Gesmundo, L. Versari, J. Alakuijala - IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020

• Truly Scalable K-Truss and Max-Truss Algorithms for Community Detection in
Graphs. A. Conte, D. De Sensi, R. Grossi, A. Marino, L. Versari - IEEE Access, 2020

• Zuckerli: A New Compressed Representation for Graphs. L. Versari, IM. Comsa,
A. Conte, R. Grossi, IEEE Access, 2020

• Intelligent Matrix Exponentiation. T. Fischbacher, IM. Comsa, K. Potempa, M.
Firsching, L. Versari, J. Alakuijala - to appear.

• ISO/IEC DIS 18181-1: Information technology - JPEG XL Image Coding System -
Part 1: Core coding system

12



PART 1

GENERAL-PURPOSE

COMPRESSION





C
H

A
P

T
E

R

2
COMPRESSION CONCEPTS AND

TECHNIQUES

E NTROPY is a fundamental concept in data compression, giving a lower bound on
the amount of bits necessary to represent a given piece of data. In this chapter,
we define the concept of entropy of a random variable, and its application to data

compression in the form of Shannon’s Source Coding Theorem [94].

We then discuss some well-known techniques for encoding a sequence of indepen-
dent, identically distributed random variables (typically positive integers or symbols
from a given alphabet), which is also known as order-0 compression.

Finally, we discuss the concept of higher-order compression, which achieves better
results when compressing a sequence of non-independent random variables, as is often
the case for e.g. text, or graphs.

2.1 Entropy of a random variable

Consider the process of flipping a biased coin that has a probability p of obtaining heads.
We define the information content, or surprise, of obtaining heads on such a coin as

I(heads) = − log p

15



2. COMPRESSION CONCEPTS AND TECHNIQUES

Note that the information content of “heads” decreases as p increases. This matches
intuition, since it is less surprising to obtain heads on a coin with a probability of heads
very close to 1.

We then define the information content of obtaining tails as

I(tails) = − log(1− p)

We can now define the entropy of our coin flip as the expected amount of information
content:

H(coin flip) = ∑
e∈{heads,tails}

Pr(e)I(e) = −p log p− (1− p) log(1− p)

Under this definition, the entropy of a coin with p = 0 or p = 1 is 0. This matches
intuition as an event that is certain gives no information (or surprise).

We can generalize these definitions to any random event x and any random variable
X.

Definition 1. The information content, or surprise, of an event x is defined as

I(x) = − log Pr(x)

The entropy of a random variable X is the expected value of the information content of X.
For a discrete variable, we have

H(x) = E[I(x)] = ∑
x∈X

Pr(x)I(x) = − ∑
x∈X

Pr(x) log Pr(x)

Following the definition, we can compute the entropy for some common random
variables.

• The entropy of a random variable that is uniformly distributed over n values is
H(Un) = log n.

• The entropy of a Bernoulli random variable with probability p is, as computed
above, −p log p− (1− p) log(1− p). We will denote this value as Hp.

• The entropy of a subset of n elements in an universe of m elements, chosen uni-
formly at random, is log (m

n) = mH
n
m + O(log m)

The fundamental application of entropy to data compression is given by Shannon’s
Source Coding Theorem [94]:

16



2.2. Entropy of a text

Theorem 2 (Source Coding Theorem). With high probability, at least nH(X) bits are required
to represent a sequence of n i.i.d. random variables with probability distribution X.

One important property of entropy is that it is additive: the entropy of a sequence
of independent random variables is equal to the sum of the entropies of each random
variable.

In the rest of this chapter, we will refer to the redundancy of an encoding scheme:

Definition 3 (Redundancy). The redundancy of a given encoding scheme for a specific source
is given by the ratio between the number of bits used by the encoding scheme and the lower
bound given by the Source Coding Theorem, i.e. the entropy of the source.

It follows that the redundancy is always at least 1. We remark that this definition is
somewhat different from the usual one, where the redundancy is the difference between
the number of used bits and the entropy.

2.2 Entropy of a text

Here and in the rest of this thesis, when we mention a text we refer to a sequence of
symbols T = t0t1 . . . tn of symbols from a given alphabet Σ.

To define the entropy for a text, we need to define a probability distribution for it.
The simplest definition is that of order 0 entropy, in which we assume every symbol to
be chosen independently of the others.

Typically, we assign to each symbol a probability equal to its frequency. Thus, if we
denote with ns the number of occurrences of s in T, we have

H0(T) = ∑
s∈Σ

ns log
n
ns

However, this definition is not entirely satisfactory, as in most natural languages
symbol choices are not independent: for example, in an English text, the sequence don’
is almost always followed by t.

The concept of higher order entropy models this property. In particular, to define
the k-th order entropy of a text Hk, we consider every symbol to belong to a different
probability distribution depending on the previous k symbols.

Let’s consider, as an example, the text Tn = anbn. As a and b appear the same
number of times in Tn, each of them has a frequency of 0.5, and thus the order 0 entropy
of Tn is

17



2. COMPRESSION CONCEPTS AND TECHNIQUES

H0(Tn) = 0.5n + 0.5n = n

For computing the order 1 entropy, we divide the symbols in Tn in 3 groups:

• The first symbol in the text: by definition, there is only one such symbol, which
occurs with frequency 1 and thus provides no entropy.

• Symbols preceded by a a: there are n− 1 symbols a and one symbol b, for a total
entropy of nH

1
n .

• Symbols preceded by a b: there are exactly n− 1 symbols b, which occur with
frequency 1 and thus provide no entropy.

The total order 1 entropy is thus

H1(Tn) = nH
1
n = log n + (n− 1) log

n
n− 1

= log n + O(1)

This value is significantly smaller than the order 0 entropy: this is because Tn has a
very specific structure and symbol choices are very far from being independent.

2.3 Integer coding

It is common to encode integers that are independently produced with a given distribu-
tion. Multiple encoding schemes have been produced, suited to various distributions;
as a consequence of the Source Coding Theorem, a given encoding scheme that uses
x(i) bits for an integer i is optimal for a distribution where i has a probability of 2−x(i), if

∑∞
i=1 2−x(i) = 1.

All the encodings described in this section will be described in the setting of encoding
positive integers. If it is necessary to also encode 0, the number to be encoded can be
increased by 1.

2.3.1 Unary coding

This is one of the simplest encodings: to encode x, a sequence of x− 1 binary digits 1 is
produced, followed by a single digit 0. It is also common to see the roles of 0 and 1 be
swapped, which doesn’t change the characteristics of the encoding.

Encoding x thus uses x bits: this encoding is optimal for sources for which x has
probability 2−x, i.e. a geometric distribution of parameter 1

2 .

18



2.3. Integer coding

2.3.2 Rice coding

Rice coding can be seen as a generalization of unary coding. It is defined by a parameter
M = 2k. When k = 0, this procedure defines the same encoding as unary coding.

In general, a number N is encoded by:

• Encoding
⌊

N
2k

⌋
in unary, and

• Encoding N mod 2k using exactly k bits.

It follows that encoding N requires
⌊

N
2k

⌋
+ k bits. In general, this encoding can only

be optimal for sequences in which each group of consecutive 2k symbols is equiprobable.
However, if we ignore the errors introduced by rounding, we can see that Rice coding
for a given k is optimal if

⌊
N
2k

⌋
is distributed geometrically with p = 1

2 . This property
suggests that Rice coding is a good choice for geometrically distributed sources where
each trial has probability of failure of 1

22−k .

Finally, we remark that it is possible to generalize Rice coding to the case where N is
not a power of two. The resulting coding scheme is called Golomb coding.

2.3.3 Elias γ coding

All the codes described so far are most suitable for geometric distributions. However,
geometric distributions decrease in probability very quickly compared to many real-
world data streams. Elias γ coding [42] is a code that addresses this issue, being suitable
for numbers that follow a power-law distribution.

The Elias γ code for a positive integer N is defined as follow:

• First, blog Nc+ 1 is encoded in unary.

• Then, the lowest blog Nc bits of N are encoded directly.

It follows that this encoding uses 2blog Nc+ 1 bits to represent N; it is thus suitable for
integers distributed in such a way that the probability of N is close to

2−2blog Nc−1 ≈ 1
2N2

Thus, γ coding is suitable for integers following a Zipf distribution with exponent close
to 2.

19



2. COMPRESSION CONCEPTS AND TECHNIQUES

2.3.4 Elias δ coding

The γ code [42] for an integer N is defined as follows:

• First, blog Nc+ 1 is encoded using Elias γ coding.

• Then, the lowest blog Nc bits of N are encoded directly.

It follows that this encoding uses 2blogblog Ncc+ blog Nc+ 1 bits to represent N; it is
thus suitable for integers distributed in such a way that the probability of N is close to

2−2blogblog Ncc−blog Nc−1 ≈ 1
2N log2 N

This probability distribution decreases more slowly than any Zipf distribution (as the
sum of N−1 over the natural numbers diverges, and hence there is no Zipf distribution
of exponent 1). However, Zipf distributions of exponent very close to 1 should be well
represented by Elias δ coding.

2.3.5 ζ codes

Elias codes provide a good representation for Zipf distributions with exponents close
to 1 and 2. To address the necessity of encoding Zipf distributions with intermediate
exponents, such as ones that are common in web graphs that have an exponent of ≈ 1.3,
[23] introduces ζ codes.

To define this code, we first need to define the minimal binary code of an integer
n ∈ [0, z).

Let s = dlog ze. The minimal binary code of n is defined as

• If n < 2s − z, then n is represented as its binary representation using s− 1 bits.

• If n ≥ 2s − z, then n is represented as the binary representation of n− z + 2s using
s bits.

We remark that, if z = 2d, this representation corresponds to usual binary representation
on d digits.

ζ codes are parameterized by a shrinking factor k. To represent an integer N, let h be
such that N ∈ [2hk, 2(h+1)k). Then, the representation is given by

• h + 1 written in unary, and

• A minimal binary code of N − 2hk, with z = 2(h+1)k − 2hk.

20



2.4. Entropy coding

When k = 1, then h = blog Nc and 2(h+1)k − 2hk = 2h, making the minimal binary code
correspond to the binary code on h digits. Hence, ζ1 is the same as Elias γ coding.

In the general case, the ζk code uses blog N/k+ 1c(k+ 1) or blog N/k+ 1c(k+ 1) + 1
bits to encode an integer N, depending on which of the two different representations
is used for the minimal binary code. This corresponds to an implied probability of
approximately

Θ
(

2−(log N/k+1)(k+1)
)
= Θ

(
N−(k+1)/k

)
= Θ

(
1

N1+ 1
k

)
which suggests that ζk codes are good for integers distributed with a Zipf law with
exponent 1 + 1

k . Plugging in k = 1 gives again the observation that Elias γ codes are
good for Zipf distributions with exponent 2, as expected.

2.3.6 π codes

π codes, introduced in [5], allow efficient encoding of Zipf distributions that have an
exponent even closer to 1 compared to ζ codes. Like ζ codes, they are also parameterized
by a positive integer k.

The encoding is defined as follows. Let h = 1 + blog Nc, and let l =
⌈

h
2k

⌉
. The code

is given by

• l written in unary,

• 2kl − h written using exactly k bits, as it is a number in [0, 2k), and

• The least significant blog Nc bits of N.

The total number of bits used to represent N is thus k +
⌈

1+blog Nc
2k

⌉
+ blog Nc. This

code is hence optimal for distributions where the probability of N is approximately

Θ
(

2− log N/2k+log N
)
= Θ

(
1

N1+2−k

)
which is the case for Zipf distributions of exponent α ≈ 1 + 2−k. Thus, π codes can
encode efficiently Zipf distributions with exponents significantly closer to 1 for a similar
value of k when compared to ζ codes.

2.4 Entropy coding

Entropy coding is a set of techniques that allows us to achieve compression close to the
entropy bound for any probability distribution, as long as the distribution is known in

21



2. COMPRESSION CONCEPTS AND TECHNIQUES

advance both on the encoding and on the decoding side of the communication. This typ-
ically implies that the compressed representation should start with some representation
of the probability distributions.

2.4.1 Prefix coding and Huffman coding

Prefix coding represents symbols from a given alphabet Σ as a sequence of bits, with the
property that for any two distinct symbols s, t ∈ Σ the sequence of bits that corresponds
to s is not a prefix of the sequence of bits that corresponds to t. This property is usually
referred to as the code being prefix-free.

The advantage of a prefix-free code is the simplicity of the decoding procedure:
indeed, it is sufficient to read one bit at a time from the encoded stream, extending a
sequence of bit values. As soon as the sequence of bit values corresponds to the sequence
associated with a symbol, that symbol can be produced, and the sequence cleared: this
is because there is no ambiguity between the sequence for a symbol or the prefix of the
sequence for another symbol.

However, in practical implementations, usually the decoding procedure uses a table
of size 2k, where k is the longest length of a sequence, that contains the first symbol to be
decoded for each of the possible combinations, and decoding then proceeds by reading
k bits at a time, looking up the symbol to be decoded, and then advancing the position
in the encoded stream by the correct amount (possibly less than k).

Prefix coding is, by definition, stateless: it is possible to resume decoding from any
symbol boundary in the bitstream, without the need of any extra information. Hence,
prefix codes are well suited for streams that require random access to specific positions
in the encoded data, as the bit position of the starting bit of the required symbol is
sufficient to resume decoding.

There are multiple ways to construct a prefix code for a given distribution of symbols.
Among those, the most well-known is certainly Huffman coding [58], which produces
optimal prefix codes; note that this does not mean that Huffman coding produces an
optimal encoding, but just that no prefix code can have lower cost. It can be described as
follows:

• At the beginning, |Σ| single-node binary trees are created, one per symbol; we de-
fine the size of each of those trees as the number of occurrences of the corresponding
symbol.

• The two trees of smallest size are merged together by creating a new tree that

22



2.4. Entropy coding

contains a root with the two trees as left and right children; the size of the new tree
is the sum of the sizes of the old trees.

• The process is repeated until there’s only one tree.

• The code associated with each symbol is given by the path from the root to the
corresponding leaf, where each left branch is represented by a 0 bit and each right
branch by a 1 (or vice-versa).

Other algorithms to build prefix codes are known. Among those, of particular note
is [67], which provides an algorithm to build optimal length-limited prefix codes, i.e.
prefix codes for which the code word for any symbol does not exceed a specified length.

2.4.2 Arithmetic coding

While prefix coding is more flexible than fixed integer codes, it uses an integer number
of bits per symbol; it follows from the definition of entropy that it cannot be optimal
unless − log p ∈N, i.e. the probability of each symbol is a power of 2.

One possible method to overcome this limitation is arithmetic coding [84]. The main
idea of arithmetic coding is to represent the sequence of symbols as a single number in
[0, 1).

To this end, we proceed as follows:

• We initialize the current interval as [0, 1).

• We split the current interval into sub-intervals, with one interval per symbol, and
length proportional to the probability ps of each symbol s.

• We replace the current interval with the interval corresponding to the next symbol,
and repeat from the previous step while there’s still symbols to encode.

• At the end, we pick any fraction with a denominator of the form 2k that is contained
in the final interval; the encoding of the sequence is given by the numerator of this
fraction, represented using k bits.

If we choose ps =
ns
n , where ns is the number of occurrences of a symbol s and n is

the total number of symbols, the size of the final interval is given by

∏
s∈Σ

(ns

n

)ns

23



2. COMPRESSION CONCEPTS AND TECHNIQUES

Since any interval of size ε contains a fraction with denominator 2− log ε+1, it follows
that the total number of bits used by arithmetic coding is at most (ignoring the cost of
encoding the number of bit itself, which is at most an additional logarithmic term)

1− log ∏
s∈Σ

(ns

n

)ns
= 1 + ∑

s∈Σ
ns log

n
ns

which matches the entropy bound of Section 2.2 up to one extra bit.
In practical implementations, it is of course not ideal to operate with arbitrary

precision floating point numbers. Hence, probabilities are typically rounded to some
arbitrary small value like 2−12, and the arithmetic coder is flushed periodically: whenever
the interval becomes sufficiently small, some bits are written to the output stream and
the interval is rescaled by the corresponding power of two. This allows to use arithmetic
coding with integer arithmetic, instead of arbitrary precision floating point arithmetic.
However, even a small interval does not always allow to fully determine the next bits to
be written; it is possible to overcome this issue, but as arithmetic coding is not the focus of
this thesis, we refer the reader to [77] for more detail about its practical implementation.

The case in which |Σ| = 2 is particularly simple and efficient to implement in practice,
and is often referred to as binary arithmetic coding.

2.4.3 Asymmetric Numeral Systems

Like arithmetic coding, Asymmetric Numeral Systems, or ANS [41], encode a sequence
s1, . . . , sn of input symbols in a single number x that can be represented with a number
of bits that is close to the entropy of the data stream. However, compared to traditional
methods of arithmetic coding it can achieve faster decompression speeds, at the cost
of requiring the decoding process to obtain symbols in reverse order compared to the
encoding process.

The encoding process adds a symbol s to the sequence represented by a number x by
producing a new integer

C(s, x) = M
⌊

x
Fs

⌋
+ Bs + (x mod Fs)

where M is the sum of the frequencies of all the symbols, Fs is the frequency of the
symbol s and Bs is the cumulative frequency of all the symbols before s. The inverse of
this function is

D(x) =
(

s, Fs

⌊ x
M

⌋
+ (x mod M)− Bs

)
where s is such that Bs ≤ x mod M < Bs+1. The decoder can thus reverse the encoding
process, producing a sequence of symbols from x. Notably, decoding does not require

24



2.5. Higher order entropy and entropy coding

any division operation (except by M, which is usually a power of 2); moreover, s can be
computed by a lookup in a precomputed table of M elements.

Like all variants of arithmetic coding, practical implementations of ANS do not use
arbitrary precision arithmetic, but rather they keep an internal state in a fixed range
[S, 2bS) that is manipulated for each symbol in the stream: when the state overflows,
it yields b bits during encoding; when the state underflows, it consumes b bits when
decoding. For correct decoding, it is required that S is a multiple of M. A reasonable
choice is to set S = 216, M = 212, and b = 16. More details about practical ANS
implementations can be found in [78].

Note that, since the encoding procedure is just the reverse of the decoding procedure,
ANS makes it easy to interleave non-compressed and compressed bits. This is especially
useful when encoding integers using both entropy coding and directly coded bits, as
done in Chapter 3.

2.5 Higher order entropy and entropy coding

As entropy coding requires communicating the probability distributions in advance, it
quickly becomes unpractical for higher order entropy coding. For example, to encode
with order-2 entropy coding a typical binary file (which has 256 distinct symbols), it
would be necessary to communicate 65 536 distributions.

Two common workarounds for this issue are:

• To use other techniques that can exploit higher order correlations in the source
data; for example, the Lempel-Ziv sliding window compression scheme [106] has
been shown [103] to be asymptotically optimal even for data with higher order
correlations. As another example, the usage of run-length encoding [91], that is,
encoding a repetition count together with each encoded symbol, allows to get rid
of the simplest correlations such as long sequences of repeated symbols. Finally, it
was shown in [61] that applying the Burrows-Wheeler Transform also allows to
compress its input within higher-order entropy bounds.

• To use adaptive probability models, that is, to transmit a small number of probability
distributions that get modified in the same way during the encoding and decoding
process. This is what is done for example in CABAC, in the H. 264 video coding
standard [65].

25





C
H

A
P

T
E

R

3
HYBRID INTEGER ENCODING

H YBRID INTEGER ENCODING is a novel, general technique to encode integers
with potentially very large values using a combination of entropy coding and
raw bits. This scheme was initially developed in the context of the JPEG XL

image compression format [2].

Directly applying entropy coding to encode integers from unbounded (or, in practice,
even bounded with very large values) distributions is unfeasible, because it would
require communicating an arbitrary distribution over N.

To circumvent this issue, a common idea is to have a single entropy-coded symbol
represent multiple integers, and then use additional bits to disambiguate. This idea
dates back to at least the JPEG standard [99].

To the best of our knowledge, Hybrid Integer Encoding is the first encoding scheme
that is parameterized to allow different trade-offs between integer range reduction
and precision of the encoding. Moreover, it is defined analytically, making it suitable
for any range of integers, while previous schemes were defined case-by-case, making
them usable only on a limited range. A similar technique is introduced independently
in [78]; this scheme proceeds by representing the integer in a fixed base (say, base 16)
and representing the first digits using entropy coding; the rest of the digits are then
represented directly. Hybrid integer encoding is more flexible in that it allows increasing
precision for smaller numbers, as well as specifying a number of least-significant bits

27



3. HYBRID INTEGER ENCODING

to be represented by entropy coding (for cases where i.e. integers to be encoded are all
even). Moreover, the precision of the approximation is more uniform across the space
of represented integers; more details and an experimental comparison can be found in
Section 3.3.

Hybrid Integer Encoding is defined by three parameters i, j and k, with k ≥ i + j and
i, j ≥ 0. The integer encoding scheme initially described in [2] corresponds to the variant
of Hybrid Integer Encoding with k = 4, i = 1, j = 0.

In the rest of this chapter we describe the proposed scheme and analyze the perfor-
mance of this method on various distributions of integers, comparing to the specific
integer codes that have been described in Section 2.3. For ease of implementation, we
will restrict the probability distributions to the [0, 232) range.

3.1 Encoding scheme

The k parameter defines the number of direct symbols. Every integer in the range [0, 2k)

is encoded directly as symbol in the alphabet.

Any other integer x ≥ 2k is encoded as follows. First, consider the binary repre-
sentation of x: bpbp−1 · · · b1, where bp = 1 is the highest non-zero bit, and p its index
(hence p = blog xc+ 1). Identify x with its corresponding triple (m, t, l), where m is
the integer formed by the i bits bp−1 · · · bp−i following bp, l is the integer formed by the
rightmost j bits bj · · · b1, and t is the integer encoded by the bits between those of m and
l, as illustrated below:

1

m︷ ︸︸ ︷
bp−1 . . . bp−i

t︷ ︸︸ ︷
bp−i−1 . . . bj+1

l︷ ︸︸ ︷
bj . . . b1

Clearly, given the triple (m, t, l), we can reconstruct x. We conveniently encode that
triple by a pair (s, t) where s = 2k + (p− k− 1) · 2i+j + m · 2j + l encodes the value of
p ≥ k + 1 by (p− k− 1) · 2i+j, the value of m as m · 2j, and the value of l. By adding 2k

to s we guarantee that s ≥ 2k, as values of s < 2k represent values of x < 2k directly.

For example, for k = 4, i = 1, and j = 2, the integer x = 211 has binary representation
1 1 0100 11 (with p = 8) and its corresponding triple is (1, 4, 3); it is thus encoded as the
pair (16 + 3 · 8 + 1 · 4 + 3, 4) = (47, 4). As another example, when k = 4, i = 1 and j = 1,
the integers from 0 to 15 are encoded with their corresponding symbol s in the alphabet,
and t is empty; 23 has binary representation 10111 and thus is encoded as symbol 17
(the highest set bit is in position 5, the following bit is 0, and the last bit is 1), followed

28



3.2. Analysis

Algorithm 1: How to decode an (s, t) pair.

if s < 2k then
return s;

l ← (s− 2k) mod 2j;
h← s−l−2k

2j ;
m← h mod 2i;
n← h−m

2i (note n = p− k− 1);
return 2n+k + m · 2n+k−i + t · 2j + l;

by the two remaining bits 11; 33 is encoded as symbol 21 (highest set bit is in position 6,
following bit is 0 and last bit is 1) followed by the three remaining bits 000.

As for t, it is stored as-is in the encoded stream, just after entropy coding s. Note
that it is possible to compute the number of bits of t from s, without knowing x: this
allows the decoder to know how many bits to read. The procedure to decode an integer
from the (s, t) pair consists of recovering the corresponding triple (m, t, l) and then
reconstructing x, and is detailed in Algorithm 1.

Table 3.1 reports more values of s, t and the number of bits n of t for some combina-
tions of k, i, j.

We remark that the number of entropy coded symbols is logarithmic in the range of
the actual integers to encode; thus, it is necessary to store very few probability values
even when encoding integers with a range of billions.

3.2 Analysis

We will now provide an analysis of the compression performance of the given encoding
scheme, both theoretically and with experimental results, including comparisons with
existing schemes.

Theorem 4. The redundancy of Hybrid Integer Encoding with parameters k, i, 0 on a stream of
i.i.d. random variables, where value v has probability pv, can be bounded from above by

r = max
a≥k

{
1, max

0≤b<2i

{
max
v∈Ia,b

a− i− log ∑v′∈Ia,b
pv′

− log pv′

}}

where Ia,b = [2a + b · 2a−i, 2a + (b + 1) · 2a−i).

Proof. By the definition of Hybrid Integer Encoding, for any integer in Ia,b with a ≥ k
and 0 ≤ b < 2i, we obtain the same value of s, and t has a length of a− i bits.

29



3. HYBRID INTEGER ENCODING

4, 2, 0 4, 1, 1 2, 1, 0 2, 0, 2

s n t s n t s n t s n t

0 0 0 − 0 0 − 0 0 − 0 0 −
1 1 0 − 1 0 − 1 0 − 1 0 −
2 2 0 − 2 0 − 2 0 − 2 0 −
3 3 0 − 3 0 − 3 0 − 3 0 −
4 4 0 − 4 0 − 4 1 0 4 0 −
5 5 0 − 5 0 − 4 1 1 5 0 −
6 6 0 − 6 0 − 5 1 0 6 0 −
7 7 0 − 7 0 − 5 1 1 7 0 −
8 8 0 − 8 0 − 6 2 00 8 1 0
9 9 0 − 9 0 − 6 2 01 9 1 0

10 10 0 − 10 0 − 6 2 10 10 1 0
11 11 0 − 11 0 − 6 2 11 11 1 0
12 12 0 − 12 0 − 7 2 00 8 1 1
13 13 0 − 13 0 − 7 2 01 9 1 1
14 14 0 − 14 0 − 7 2 10 10 1 1
15 15 0 − 15 0 − 7 2 11 11 1 1

16 16 2 00 16 2 00 8 3 000 12 2 00
17 16 2 01 17 2 00 8 3 001 13 2 00
22 17 2 10 16 2 11 8 3 110 14 2 01
23 17 2 11 17 2 11 8 3 111 15 2 01
24 18 2 00 18 2 00 9 3 000 12 2 10
25 18 2 01 19 2 00 9 3 001 13 2 10
26 18 2 10 18 2 01 9 3 010 14 2 10
27 18 2 11 19 2 01 9 3 011 15 2 10
28 19 2 00 18 2 10 9 3 100 12 2 11
29 19 2 01 19 2 10 9 3 101 13 2 11
30 19 2 10 18 2 11 9 3 110 14 2 11
31 19 2 11 19 2 11 9 3 111 15 2 11

32 20 3 000 20 3 000 10 4 0000 16 3 000
33 20 3 001 21 3 000 10 4 0001 17 3 000
63 23 3 111 23 3 111 11 4 1111 19 3 111
64 24 4 0000 24 4 0000 12 5 00000 20 4 0000
65 24 4 0001 25 4 0000 12 5 00001 21 4 0000

127 27 4 1111 27 4 1111 13 5 11111 23 4 1111
128 28 5 00000 28 5 00000 14 6 000000 24 5 00000

Table 3.1: Token, number of bits and raw bits for some hybrid integer configurations.

30



3.2. Analysis

Thus, the probability of the value s corresponding to integers in Ia,b will be

∑
v∈Ia,b

pv

It follows that encoding an integer in Ia,b will use a total number of bits given by

a− i− log ∑
v∈Ia,b

pv

For values below 2k, s is sufficient for encoding the integer, so the number of used
bits will be − log pv.

Overall, the expected number of bits used by hybrid integer encoding is given by

B = ∑
v<2k

−pv log pv + ∑
a≥k

∑
0≤b<2i

∑
v∈Ia,b

pv

(
a− i− log ∑

v′∈Ia,b

pv′

)
≤ ∑

v<2k

−pv log pv + ∑
v≥k
−rpv log pv

≤ r ∑
v
−pv log pv

which proves the theorem.

Corollary 5. For j > 0, the redundancy can be bounded by the maximum redundancy of 2j

streams of i.i.d. variables, each coded with a Hybrid Integer Code with parameters k− j, i, 0 and
containing the integers equal to {0, · · · , 2j − 1} modulo 2j.

Using Theorem 4, we can give an upper bound for the redundancy of Hybrid Integer
Encoding on a geometric distribution with parameter 0 < α < 1. We recall that in a
geometric distribution pv = αv(1− α).

We first compute

∑
v∈Ia,b

pv = ∑
v∈Ia,b

αv(1− α)

= (1− α)α2a+2a−ib ∑
v<2a−i

αi

= (1− α2a−i
)α2a+2a−ib

As pv is decreasing, the maximum over Ia,b is achieved on v = 2a + 2a−ib.
Thus, we can rewrite the formula in Theorem 4 as

a− i− (2a + 2a−ib) log α− log(1− α2a−i
)

−(2a + 2a−ib) log α− log(1− α)

31



3. HYBRID INTEGER ENCODING

Observing that log(1− α) ≤ log(1− α2a−i
) ≤ 0, and that log α < 0, thus making the

denominator minimum when b = 0, we can bound the given formula from above by

1 +
(a− i)2−a

log 1
α

To compute the maximum of this value, we first differentiate (a− i)2−a, observing
that its maximum occurs in i + log e. Thus, the maximum over integers will occur either
for a = i + 1 or a = i + 2, which both yield 2−(i+1); moreover, as a increases beyond
i + 2, the value of (a− i)2−a decreases.

As a ≥ k, we can state the following

Theorem 6. The redundancy of Hybrid Integer Encoding with parameters k, i, 0 when encoding
a geometric distribution with parameter α is at most

rα,k,i ≤


1 + 2−(i+1)

log 1
α

if k ≤ i + 2

1 + (k−i)2−k

log 1
α

otherwise

We now consider the case of a generic decreasing probability distribution. If we define
p̂a,b = p2a+2a−ib and p̌a,b = p2a+2a−i(b+1)−1, it follows that

∑
v∈Ia,b

pv ≥ 2a−i p̌a,b

Thus, we can state

Theorem 7. The redundancy of Hybrid Integer Encoding with parameters k, i, 0 when encoding
a decreasing distribution is at most

max
a≥k

0≤b<2i

log p̌a,b

log p̂a,b

Applying this theorem, we can also obtain a bound for Zipf distributions:

Theorem 8. The redundancy of Hybrid Integer Encoding with parameters k, i, 0 when encoding
a Zipf distribution with parameter α is at most

rα,k,i ≤ 1 +
log(1 + 2−i)

k + log ζ(α)
α

32



3.3. Experimental results

Proof. We have
p̂a,b = (2a + 2a−ib)−αζ(α)−1

and
p̌a,b = (2a + 2a−i(b + 1)− 1)−αζ(α)−1

Thus,

max
a≥k

0≤b<2i

log p̂a,b

log p̌a,b
= max

a≥k
0≤b<2i

α log(2a + 2a−i(b + 1)− 1) + log ζ(α)

α log(2a + 2a−ib) + log ζ(α)
=

= max
a≥k

0≤b<2i

1 +
α log(2a + 2a−i(b + 1)− 1)− α log(2a + 2a−ib)

α log(2a + 2a−ib) + log ζ(α)
=

= 1 + max
a≥k

0≤b<2i

log 2a+2a−i(b+1)−1
2a+2a−ib

log(2a + 2a−ib) + log ζ(α)
α

=

= 1 + max
a≥k

0≤b<2i

log
(

1 + 2a−i−1
2a+2a−ib

)
log(2a + 2a−ib) + log ζ(α)

α

=

= 1 + max
a≥k

log
(

1 + 2a−i−1
2a

)
log 2a + log ζ(α)

α

=

= 1 + max
a≥k

log
(
1 + 2−i − 2−a)
a + log ζ(α)

α

≤

≤ 1 +
log(1 + 2−i)

k + log ζ(α)
α

We remark that the bounds obtained here are not especially tight: for example, for
k = 4, i = 2 and α = 2, they predict a redundancy of about 7.3%, while the results of
the experimental evaluation show an actual redundancy of about 0.6%. Nonetheless,
these bounds serve the purpose of showing that it is possible to achieve redundancy
below any constant greater than 1 with the Hybrid Integer Encoding scheme for these
two distributions.

3.3 Experimental results

We now report the results of an experimental comparison of the Hybrid Integer Encoding
scheme on a sequence of 107 i.i.d. integers with geometric (in Figures 3.1, 3.2 and 3.3)

33



3. HYBRID INTEGER ENCODING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

4

8

3

6

p

re
du

nd
an

cy

hyb-Huff hyb-ANS unary Rice 1
Rice 2 Rice 3 Rice 4 Rice 5

Figure 3.1: Redundancy of Hybrid Integer Encoding, compared to Rice codes, on a
geometric distribution for various values of p.

34



3.3. Experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

4

8

3

6

p

re
du

nd
an

cy

ζ2 ζ3 ζ4 ζ5 ζ6
hyb-Huff hyb-ANS Elias γ Elias δ

Figure 3.2: Redundancy of Hybrid Integer Encoding, compared to ζ and Elias codes, on
a geometric distribution for various values of p.

35



3. HYBRID INTEGER ENCODING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

4

8

3

6

p

re
du

nd
an

cy

π1 π2 π3 π4 π5
hyb-Huff hyb-ANS Elias γ Elias δ

Figure 3.3: Redundancy of Hybrid Integer Encoding, compared to π and Elias codes, on
a geometric distribution for various values of p.

36



3.3. Experimental results

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1

2

4

8

3

6

α

re
du

nd
an

cy

hyb-Huff hyb-ANS unary Rice 1
Rice 2 Rice 3 Rice 4 Rice 5

Figure 3.4: Redundancy of Hybrid Integer Encoding, compared to Rice codes, on a Zipf
distribution for various values of α.

37



3. HYBRID INTEGER ENCODING

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1

2

4

8

3

6

α

re
du

nd
an

cy

ζ2 ζ3 ζ4 ζ5 ζ6
hyb-Huff hyb-ANS Elias γ Elias δ

Figure 3.5: Redundancy of Hybrid Integer Encoding, compared to ζ and Elias codes, on
a Zipf distribution for various values of α.

38



3.3. Experimental results

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
1

2

4

8

3

6

α

re
du

nd
an

cy

π1 π2 π3 π4 π5
hyb-Huff hyb-ANS Elias γ Elias δ

Figure 3.6: Redundancy of Hybrid Integer Encoding, compared to π and Elias codes, on
a Zipf distribution for various values of α.

39



3. HYBRID INTEGER ENCODING

and Zipf (in Figures 3.4, 3.5 and 3.6) distributions respectively, compared with Rice, ζ,
π and Elias γ and δ codes. The distributions were cut at the threshold of 232, i.e. no
number higher than 232 was generated.

The Hybrid Integer Encoding scheme was combined with either Huffman coding or
with ANS coding for encoding the symbols, using as parameters k = 4, i = 2, j = 0.

Hybrid Integer Encoding combined with ANS always has redundancy extremely
close to 1, thanks to the possibility of using fractional bits per symbol.

On the other hand, Huffman-based Hybrid Integer Encoding can have higher re-
dundancies for very skewed distributions, but has always the lowest redundancy of
all the encoding schemes that use an integer number of bits per value. In particular, it
always matches unary and Rice coding those geometric distributions where the codes
are optimal.

We also measured the decoding speed of hybrid integer encoding, comparing against
the γ and δ coding implementations in https://github.com/jacobratkiewicz/

webgraph. We found that the extra computation required does not significantly affect
decoding speed, as for all the integer coding methods the single-threaded decoding
speed is between 6 and 8 nanoseconds per integer on a 32-core AMD 3970X CPU (with
SMT enabled) with 256GB of RAM.

A possible implementation of Hybrid Integer Coding is provided in Figure 3.7. This
implementation assumes that classes for reading and writing both raw and entropy-
coded bits are available.

It can easily be seen that the decoding process just requires simple arithmetic, shifts
and bit reading, which are readily available on most modern processors. On more
constrained environments, such as low-powered microcontrollers that do not have a
barrel shifter, we expect that implementing hybrid integer decoding might be more
problematic; nonetheless, such microcontrollers are becoming less and less common.

As for the implementation of the encoder, the situation is similar to the decoder,
except for the additional required FloorLog2 operation; this operation is once again
readily available on most modern CPUs (in particular x86 and arm), and can be easily
emulated otherwise.

Finally, we compare Hybrid Integer Coding with the method proposed in [78]. For
this comparison, we will use base 16 and we will encode just the most significant digit
in base 16 using entropy coding, as is done in [78]. This corresponds to, on average,
encoding ≈ 2.26 bits below the most significant bit with entropy coding (0 bits when the
first digit is 1, 1 bit for 2− 3, 2 bits for 4− 7 and 3 bits for 8− 15); accordingly, the closest
corresponding Hybrid Integer Coding setting is 4, 2, 0, which fully entropy encodes

40

https://github.com/jacobratkiewicz/webgraph
https://github.com/jacobratkiewicz/webgraph


3.3. Experimental results

class HybridIntegerCoder {
public:

void Encode(uint32_t value, BitWriter* writer) const {
if (value < (1<<k)) {

writer->EntropyEncode(value);
} else {

uint32_t n = FloorLog2(value);
uint32_t m = value - (1 << n);
uint32_t high_bits = m >> (n - i);
uint32_t low_bits = m & ((1 << j) - 1);
uint32_t token = (1<<k) + ((n - k) << (i + j)) +

(high_bits << j) + low_bits;
uint32_t nbits = n - i - j;
uint32_t bits = (value >> j) & ((1UL << *nbits) - 1);
writer->EntropyEncode(token);
writer->Write(nbits, bits);

}
}

uint32_t Decode(BitReader* br) const {
uint32_t token = br->EntropyDecode();
if (token < (1<<k)) return token;
uint32_t nbits = k - (i + j) +

((token - (1<<k)) >> (i + j));
uint32_t low_bits = token & ((1 << j) - 1);
token >>= j;
uint32_t bits = br->ReadBits(nbits);
uint32_t high_bits = (1 << i) | (token & ((1 << i) - 1));
return (((high_bits << nbits) | bits) << j) | low_bits;

}
uint32_t k = 4;
uint32_t i = 2;
uint32_t j = 0;

};

Figure 3.7: A possible implementation of Hybrid Integer Coding.

numbers up to 16 and entropy codes the highest two bits after the most significant one
for larger numbers.

Results are reported in Figures 3.8 and 3.9. The two schemes result in very similar
performance; however, Hybrid Integer Coding has better performance (up to 0.6− 0.8%
better) on geometric distributions with small p, and worse performance (up to 0.3%) for
Zipf distributions with very large α, where the effect of the larger average number of
entropy coded bits is more pronounced.

41



3. HYBRID INTEGER ENCODING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.992

0.994

0.996

0.998

1.000

p

ra
ti

o

Huffman
ANS

Figure 3.8: Ratio of encoded size between Hybrid Integer Encoding and the method
proposed in [78], on a geometric distribution for various values of p. Values smaller than
1 correspond to a smaller size for Hybrid Integer Coding.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0.998

0.999

1.000

1.001

1.002

1.003

α

ra
ti

o

Huffman
ANS

Figure 3.9: Ratio of encoded size between Hybrid Integer Encoding and the method
proposed in [78], on a Zipf distribution for various values of α. Values smaller than 1
correspond to a smaller size for Hybrid Integer Coding.

42



C
H

A
P

T
E

R

4
NOVEL TECHNIQUES FOR

HIGH-ORDER ENTROPY CODING

T O MAKE HIGH-ORDER ENTROPY CODING MORE PRACTICAL, we propose two
techniques which, to the best of our knowledge, have not been explored in
the literature: context clustering and decision-tree-based context modeling.

In this chapter, we will denote context space (C) the space of all the possible contexts for
a symbol, Σ the set of all possible symbols, PΣ the set of all the probability distributions
on Σ, and c(s) the context associated with a given symbol s.

We will also make the simplifying assumption that encoding the probability of
a given symbol requires a fixed number of bits b, and thus encoding a probability
distribution requires |Σ|b bits. In most real-world encoding schemes, this is not the case,
but the rest of the chapter is substantial unchanged even with more complex distribution
cost models; thus, for simplicity of exposition, we will use this trivial cost model.

The problem of communicating the probability distributions of each symbol can
be seen as the problem of encoding a function d : C → PΣ; in the most general case,
corresponding to trivial order-k entropy coding, encoding d requires O(|C| · |Σ| · b) bits.

In the example from Section 2.5, order-2 entropy coding of a binary file, Σ =

{0, . . . , 255}, C = Σ2 and c(s) is the pair formed by the two bytes preceding s. Assuming
b = 12, as is often the case when using arithmetic coding, the cost of transmitting the dis-

43



4. NOVEL TECHNIQUES FOR HIGH-ORDER ENTROPY CODING

0 1 2
0

2

4

6

8

symbol

co
un

t

(a) h(a), H(a) ≈ 19.30.

0 1 2
0

2

4

6

8

symbol

co
un

t

(b) h(b), H(b) ≈ 17.35.

0 1 2
0

2

4

6

8

10

symbol

co
un

t

(c) h(a, b), H(a, b) ≈ 42.29.

Figure 4.1: An example of histograms for the two context values a and b on the alphabet
{0, 1, 2}.

tributions in the most trivial way would be approximately |Σ|2 · |Σ| · 12 = 201 326 592 ≈
25 megabytes, making order-2 entropy coding unfeasible for files that are not extremely
large.

4.1 Context clustering

The idea behind context clustering is simple: as distributions are significantly expensive,
we can reduce the number of distributions to encode by splitting d in two parts:

cl : C → {0, . . . , k− 1} dc : {0, . . . , k− 1} → PΣ

d = dc ◦ cl

44



4.1. Context clustering

Algorithm 2: Context clustering algorithm. Returns an array of context clusters.

cm ← c ∈ C such that H(c) is maximum;
S ← {cm};
while |S| < min(k, |C|) do

dx ← minc∈S D(h(c), h(x));
cm ← c ∈ C \ S such that dc is maximum;
S ← {cm} ∪ S ;

G ← [{c} for c ∈ S ];
foreach c ∈ C \ S do

m← i such that D(h(c), h(G[i])) is minimum;
G[i]← G[i] ∪ {c};

return G;

The values 0, . . . , k − 1 effectively correspond to a cluster of context values, and
distributions are assigned to clusters instead of specific context values. It is easy to see
that the cl function can be encoded using O(|C| · log k) bits, and the dc function requires
O(k · |Σ| · b) bits. Thus, this scheme achieves a significant reduction of distribution cost
when |C| is large (as typically log k� |Σ| · b).

We will denote with h(c), for c ∈ C, the histogram of values x such that c(x) = c.
We denote by h(a1, . . . , an) the histogram obtained by pointwise adding the counts of
all the symbols in h(a1), . . . , h(an); finally, we will denote by H(a1, . . . , an) the cost in
bits of encoding all the symbols that have a1, . . . , an as a context, i.e. the entropy of the
distribution defined by h(a1, . . . , an) multiplied by its total symbol count.

As an example, Figure 4.1 shows histograms for two distinct context values a, b on a
3-symbol alphabet. We have that

H(a) = 8 log
14
8

+ 4 log
14
4

+ 2 log
14
2
≈ 19.30

H(b) = 2 log
13
2

+ 3 log
13
3

+ 8 log
13
8
≈ 17.35

H(a, b) = 10 log
27
10

+ 7 log
27
7

+ 10 log
27
10
≈ 42.29

Once cl is known, how to choose dc is obvious: it is simply, for each cluster, the
histogram obtained by merging the histograms that belong to the cluster.

45



4. NOVEL TECHNIQUES FOR HIGH-ORDER ENTROPY CODING

4.1.1 Heuristic algorithm

We will now present a heuristic algorithm to choose cl for a fixed value of k, with running
time O(|Σ| · |C| · k).

We first define a distance between two histograms h(A), h(B) as follows:

D(h(A), h(B)) = H(A ∪ B)− H(A)− H(B) ≥ 0

Clearly, D can be computed in O(Σ) time. From the example above, we can see that
D(h(a), h(b)) = H(a, b)− H(a)− H(b) ≈ 5.64.

The algorithm, detailed in Algorithm 2, proceeds with the following steps:

1. Pick the element c1 from C such that H(c1) is maximum.

2. Pick the element ci from C \ {c1, . . . , ci−1} such that minj<i D(h(ci), h(cj)) is maxi-
mum.

3. Repeat the previous step until k elements have been chosen.

4. Assign each element c ∈ C to cluster i if D(c, ci) is minimum among the choices of
i; replace ci with ci ∪ {c}.

As described, the second step of the algorithm needs to evaluate O(k2|C|) times the
function D. However, as the minimum is computed over an increasing set that has
maximum size k, it is easy to see that only O(k|C|) evaluations are necessary. Indeed,
we can keep track, for every c ∈ C, of the minimum of D(h(c), h(ci)) for every selected
ci, and compute the distance of every c ∈ C from each newly selected histogram and
update the minimum if necessary.

The algorithm described here is reminiscent of a deterministic version of the ini-
tialization step of k-means++ [6]. However, the D function is not one of the common
distance metrics (||x− y||l) that are known to guarantee good results for k-means++,
and the problem being solved is not quite equivalent to k-means clustering. Nonetheless,
given the similarities of the two problems, it seems reasonable to state the following
conjectures:

Conjecture 9. It is NP-complete to decide whether there exist two functions cl and dc such that

• The cost of encoding the input text using (dc ◦ cl)(c(x)) as the distribution for encoding
x is below a threshold t.

• cl only produces k distinct values.

46



4.2. Decision-tree-based context modeling

x2 > 0

x3 > 10 x1 > 50

x1 > 64 ctx 3 ctx 2 x1 > 18

ctx 1 ctx 0 ctx 1 ctx 0

Figure 4.2: An example of a context tree CT. Dashed arrows correspond to branches that
are taken if the condition is false; xn corresponds to the value of the n-th dimension of
the context value. Hence, the root of the tree in the figure will choose the left child if
dimension 2 of the context value is strictly positive, and the right child otherwise.

Conjecture 10. There is a randomized scheme for selecting a new element from C that achieves
in expectation a O(log k) approximation of the true optimum of context clustering.

The second conjecture follows from the fact that the initialization step of k-means++
is a O(log k) approximation, as shown in [6].

4.2 Decision-tree-based context modeling

When C is very large, encoding the cl function can still be prohibitively expensive. We
now present another representation of the cl function that has the interesting character-
istic of not requiring space proportional to |C|.

This technique assumes, as is often the case, that C is a product of intervals of integers
I1 × · · · × In; this then produces a decomposition of c ∈ C given by c = (x1, . . . , xn).

We define a binary tree CT where:

• Each inner node contains an index i and a threshold t.

47



4. NOVEL TECHNIQUES FOR HIGH-ORDER ENTROPY CODING

• Each leaf node contains a clustered context ID, similarly to the output of cl.

An example is given in Figure 4.2.
Then, we can define a function tCT(c) that is computed by traversing the tree; when

visiting an inner node, the traversal proceeds left if xi > t, and proceeds right otherwise.
When a leaf is reached, its clustered context ID is produced as the output of tCT(c).

Note that more complex decision nodes are possible, for example nodes that contain
a weight vector w ∈ Rn and pick the right or left child based on the value of w · x.

This context modeling technique can be seen as a generalization and modification
of the Context Tree Weighting scheme in [102], which defines an adaptive scheme for
encoding probabilities of bits. In particular, a binary tree is maintained during the
encoding (or decoding) procedure, where level k of the tree is traversed according to the
k-th previous bit in the encoded stream. The probability used for encoding the next bit
is then given by the product of all the probability along the root-leaf path; moreover, the
probabilities are modified during the coding process.

The scheme proposed here differs in multiple ways:

• It is static and not adaptive, i.e. probabilities don’t change over time; this requires
transmitting the tree itself together with the data, but generally allows a faster
decoding process.

• It is meant to encode integers and not just single bits, thus requiring full probability
distributions; on the other hand, this significantly reduces the number of entropy
decoding operations necessary.

• It is more general, allowing arbitrary decision nodes instead of just using the k
previous bits. In particular, it allows having nodes on the same level that decide
based on different conditions.

Let |CT| denote the number of inner nodes of the tree, k denote the number of
possible context IDs, and s denote the maximum size of the intervals that compose C, i.e.
|Ii| ≤ s. Then the function d = dc ◦ tCT can be encoded using O(|CT| · (log n + log s) +
(|CT|+ 1) log k + k · |Σ| · b) bits, where the first term is given by the cost of encoding the
inner nodes, the second term by the cost of encoding the leaves, and the third term by
the cost of encoding the dc function.

It is thus important to consider the problem of constructing the decision tree that
minimizes the resulting data encoding cost among those that have at most a given
number of nodes and of different context IDs.

48



4.2. Decision-tree-based context modeling

Given the multiple hardness results for constructing optimal cost decision trees in
the literature [66, 33], we state the following

Conjecture 11. Determining whether there exists a decision tree CT and a function dc such
that

• The cost of encoding the input text using (dc ◦ tCT)(c(x)) as the distribution for encoding
x is below a threshold t

• The number of inner nodes of the tree is at most nt

• The leaves of CT contain at most k distinct values

is NP-complete, and it is still NP-complete if we take k = ∞.

We now give algorithms for the optimization version of the above problem in some
interesting special cases. In the rest of this section we will assume that the nh non-empty
histograms for the context space are given in a sparse form, i.e. that it is possible to list
all the values of c for which the corresponding histogram of values is non-empty, and to
retrieve the histogram corresponding to a given c in constant time. This could be done,
for example, by keeping the values of c with non-empty histograms in a cuckoo hash
table [82].

4.2.1 Optimal algorithm for n = 1, k > nt

Theorem 12. The optimal decision tree problem can be solved in O(s2(|Σ|+ nt)) time when
n = 1 and k > nt.

Proof. We will assume without loss of generality that in this case C = {0, . . . , s− 1}. We
first compute, for every 0 ≤ i < j ≤ s, Hi,j = H(i, . . . , j− 1). By computing prefix sums
of histograms, this can be done in O(s2|Σ|) time.

We now find a sequence c1, . . . , ck of split points such that k ≤ nt and H0,c1 + · · ·+
Hck−1,s−1 is minimum. It is then straightforward to build an optimal decision tree
that satisfies the requirements of the problem from this sequence, by using each ci as
thresholds for the decisions.

We solve this problem via dynamic programming; Algorithm 3 contains a more
detailed description. In particular, let C(i, j) be defined as the minimum cost of encoding
the symbols corresponding to context values {0, . . . , i− 1} using at most j split points.
Then

49



4. NOVEL TECHNIQUES FOR HIGH-ORDER ENTROPY CODING

Algorithm 3: Optimal decision tree polynomial-time algorithm for n = 1 and
k > nt.

for i = 0 . . . s− 1 do
hist← ∅;
Hi,i ← 0;
for j = i + 1 . . . s do

hist← hist ∪ {j− 1};
Hi,j ← H(hist);

C ← array with s× nt entries;
for i = 0 . . . s do

C(i, 0)← H0,i;

for j = 0 . . . nt do
C(0, nt)← 0;

for j = 1 . . . nt do
for i = 1 . . . s do

C(i, j)← mink<i (Hk,i + C(k, j− 1));

splits← ∅;
p← s;
n is such that C(s, n) is minimum;
while n > 0 and s > 0 do

k is such that k < s and Hk,p + C(k, n− 1) is minimum;
splits← {k} ∪ splits;
p← k;
n← n− 1;

return a decision tree using the values in splits as decision nodes;

• C(i, 0) = H0,i, as this corresponds to encoding all the first i contexts together.

• C(0, j) = 0, as this corresponds to encoding an empty sequence.

• C(i, j) = mink<i (Hk,i + C(k, j− 1)): the function inside the minimum is the cost
of having the last split point before position i in position k, which covers all
possibilities.

The minimum cost is then given by minj≤nt C(s, j), and the set of splits that produces
this minimum cost can be easily reconstructed by backtracking through the optimal
choices done while computing the dynamic programming table.

The dynamic programming table has O(s · nt) states, and computing the value of
each state can be done in O(s) time. Thus, this part of the algorithm runs in O(s2 · nt)

50



4.2. Decision-tree-based context modeling

time, proving the thesis.

4.2.2 Optimal algorithm for nt = 1

Theorem 13. The optimal decision tree problem can be solved in O(n(s + nh)|Σ|) when nt = 1.

Proof. We first observe that, as the decision tree can have only one node, we can reduce
ourselves to the case n = 1 without loss of generality. The optimal solution for the
general case can be then obtained by running the given algorithm along each dimension
of C separately, and taking the tree of minimum cost among the n optimal trees for each
dimension.

Note that the cost of considering a single dimension at a time is O(nh|Σ|), corre-
sponding to the cost of merging together all the histograms that correspond to the same
value along that dimension.

Along each dimension, by applying the dynamic programming algorithm we can
immediately get an algorithm with cost O(s2|Σ|).

However, by observing that a single split divides the context space in a prefix and
a suffix, we can limit ourselves to computing H0,j and Hj,s for 0 < j < s; the optimal
solution will then be the j that minimizes H0,j + Hj,s, for a total time cost of O(s|Σ|).

4.2.3 Heuristic algorithm in pseudolinear time for n = 1

In some cases, s may be too large for the proposed algorithm for n = 1 to be practical.
Thus, we present an heuristic algorithm for the n = 1 case that runs in pseudolinear
time (a detailed implementation is available in Algorithm 4).

• Create a sequence of intervals Ii = [i, i + 1) for i = 0, . . . , s− 1.

• Keep all pairs of adjacent intervals in a min-heap, sorted by the cost increase
of merging the pair together (i.e. by D(h(Ii), h(Ii+1) = H(Ii cupIi+1)− H(Ii)−
H(Ii+1)).

• Merge together the pair of intervals of lowest cost, and update the cost of merging
the new interval with its neighbors.

• Repeat the previous step until at most nt + 1 intervals are left.

• Build a tree using the boundaries of those intervals as thresholds for decision
nodes.

51



4. NOVEL TECHNIQUES FOR HIGH-ORDER ENTROPY CODING

Algorithm 4: s log s heuristic for n = 1 and k > nt.

H ← empty min-heap;
splits← [1, . . . , s− 1];
for i = 0 . . . s− 2 do

Ci,i+2 ← H([i, i + 2)];
insert Ci,i+2 inH;

while |splits| > nt do
Ca,b ← pop_heap(H);
erase the only i in splits such that a < i < b;
if ∃x ∈ splits : x < a then

x ← max x ∈ splits : x < a;
erase Cx,i fromH;
Cx,b ← H([x, b)];
insert Cx,b inH;

if ∃y ∈ splits : y > b then
y← min y ∈ splits : y > b;
erase Ci,y fromH;
Ca,y ← H([a, y)];
insert Ca,y inH;

return a decision tree using the values in splits as decision nodes;

It can easily be seen that the computational cost of this algorithm is given by O(s|Σ|)
for computing the costs of histogram pairs plus O(s log s) for maintaining the heap, for
a total cost of O(s(log s + |Σ|)).

4.2.4 Heuristic for the general case

We conclude with a simple greedy algorithm to solve the general case of the optimal
decision tree problem; the algorithm proceeds by recursively splitting the context space
in two by finding the best single split using the algorithm described in Theorem 13.
When a candidate split is found, it is put into a max-heap that uses the gain of the split
as a key, and a tree is built by recursively expanding the most promising split. The
algorithm stops when the desired number of nodes has been reached.

We remark that, in practical usage, nt is not an actual problem constraint, but we
seek to find the tree that achieves the best balance between compression gains and cost
for encoding the tree itself. To this end, we can modify the previous algorithm slightly
to make the recursion stop when the gain of performing a split is too small to offset the
increased decision tree cost, rather than when a given number of nodes is reached. This

52



4.2. Decision-tree-based context modeling

Algorithm 5: Decision tree construction heuristic.

Function FindTree(C):
xp, v← best single-node condition from Theorem 13;
Ct ← cost of encoding with a leaf-only tree;
Cs ← cost of encoding with a tree with xp > v condition;
if Ct − Cs > thres then

root.dimension← p;
root.thres← v;
Cl ← C ∩ {xp > v};
root.le f t← FindTree(Cl);
Cr ← C ∩ {xp ≤ v};
root.right← FindTree(Cr);
return root;

return leaf;

algorithm is presented in Algorithm 5, and used in the experiments in Section 7.4.

53





PART 2

GRAPH COMPRESSION





C
H

A
P

T
E

R

5
COMMON TECHNIQUES FOR GRAPH

COMPRESSION

C OMPRESSION OF LARGE GRAPHS is a well-studied problem, and multiple dif-
ferent techniques have been applied. This chapter gives an overview of the
main techniques that have been used in the literature for graph compression.

We will broadly classify compression techniques in primitive and derivative, where the
second class is composed mainly of techniques that apply transformations on the input
graph to obtain one or more different graphs that are then compressed with existing
methods.

We can identify the following main groups of techniques for primitive graph com-
pression:

• Raw link encoding: schemes that encode adjacency lists directly, without exploiting
correlations between separate lists.

• Grammar- and dictionary-based: schemes that exploit recurring patterns by re-
placing them with a single object, possibly in a recursive way.

• Class-tailored: schemes that are optimal for a specific class of graphs, such as trees
or planar graphs.

57



5. COMMON TECHNIQUES FOR GRAPH COMPRESSION

• Tree-based: schemes that build a tree that represents the adjacency matrix of the
graph and encode the tree efficiently.

• Copying models: schemes that use other adjacency lists as a reference for encoding
a given list, or encode together multiple lists with their local variations.

In the derivative approaches, we identify two main groups:

• Graph decomposition: schemes that split the input graph into multiple graphs
that are encoded separately, but are better compressible.

• Graph permutation: schemes that permute the order of the nodes in the graph to
achieve better compressibility.

For an overview of graph compression approaches that are focused on graphs with
very specific structures, approaches for compression of labeled graphs where the links
and labels are very heavily structured (such as RDF graphs), and application of graph
compression in the context of, i.e., graph databases, we refer the reader to [12].

5.1 Raw link encoding

Raw link encoding is one of the simplest ways to represent a graph. The well-known
Compressed Sparse Row matrix representation format may be considered one such
representation, in which every destination node of outgoing edges of each node is
represented using dlog ne bits, all such lists are concatenated in the order in which nodes
appear in the graph, and an auxiliary structure with n dlog ne-bit entries is used to store
the degree of each node. This representation uses a total of (n + m)dlog ne bits, and can
be considered a baseline for compressed representations.

The Connectivity Server [14, 27, 100] can be seen as the first substantial improvement
over the CSR scheme mentioned above, applying the well-known technique of gap
coding to the list of outgoing edges of a given node. More precisely, instead of storing
the index of the destination node, the Connectivity Server stores the difference between
the index of destination node i + 1 and the index of destination node i, after sorting the
edges in increasing order of destination node. This typically results in a significantly
reduced magnitude of numbers to be encoded, which benefits integer coding schemes
that use a variable number of bits per edge.

Another technique to reduce the magnitude of the encoded numbers is explored
in [54], which observes that often links in large graphs cross a small number of nodes;

58



5.2. Grammar- and dictionary-based

a possible encoding scheme would thus encode the difference between the end node
and the source node. The scheme proposed in [54] uses Huffman codes for short edges,
falling back to fixed-length 16 or 32 bit codes for longer edges.

In [7], an improvement over Connectivity Server was achieved thanks to the observa-
tion that many parameters in web graphs follow a Zipf distribution; this observation has
been exploited in multiple compression schemes. Moreover, it was observed to be true
in other kinds of networks too, like social networks or brain connectivity networks [29].

Another important observation for compression purposes comes from [89]: web
graphs often have the properties of locality and similarity. In other words, if one considers
nodes in the web graph sorted by URL, it will often be the case that many links point to
nearby pages, and that nearby pages point to the same destinations. The first property in
particular explains the success of gap coding, while similarity provides a good theoretical
foundation for copying models. As with the power-law distribution characteristics of
web graphs, locality and similarity are also present in other classes of large graphs [34].

More recently, LogGraph [13] proposes a couple of variations on the raw link encod-
ing framework, using per-node fixed length integer representations for high performance
access, or storing out-edges in a multipart representation that is composed of a shared
prefix, common to multiple edges, and a per-edge suffix. This approach is also combined
with permutation schemes to maximize the compression savings.

5.2 Grammar- and dictionary-based

Grammar- and dictionary-based approaches exploit the occurrence of common patterns
in large-scale graphs.

Inspired by the text compression algorithm Re-Pair [68], [36] proposes to exploit
common pattern in the adjacency lists of a graph by considering adjacency lists as a
sequence of symbols, and then replacing the most common pair of consecutive symbols
with a single new symbol, memorizing in a dictionary the replacement rule. The
process is repeated until no pair appears at least twice; the resulting dictionary is
then compressed to improve storage requirements.

This approach does not directly exploit the linked structure of graphs. GraphRe-
Pair [74] overcomes this limitation by applying the same kind of approach to pairs of
edges, instead of entries in the adjacency list.

The representations described above are recursive in nature, representing the graph
in a tree-like structure that contains the edges as leaves. In contrast, the virtual nodes
approach of [28] proceeds by doing a structural modification on the graph itself: for

59



5. COMMON TECHNIQUES FOR GRAPH COMPRESSION

any virtual node v, the presence of a pair of edges (a, v) and (v, b) corresponds to the
presence of edge (a, b) in the original graph, so that each virtual node represents as many
edges as the product of its in- and out-degrees. The compression algorithm proceeds by
finding complete bipartite subgraphs, representing them with virtual nodes, and finally
compressing the resulting graph using Huffman coding.

This kind of structural modifications of the graph also have the attractive property
of being able to run many algorithms directly on the compressed representation of the
graph [62], often with a computational cost proportional to the size of the compressed
representation instead of the size of the graph itself.

5.3 Class-tailored

Multiple algorithms have been proposed to compress specific families of graphs down
to the corresponding information-theoretical lower bounds.

Algorithms are known to compress a tree of n nodes using 2n + o(n) bits, while
supporting efficient navigation. More details about tree compression are given in
Subsection 5.3.1.

Other algorithms are known for compressing planar graphs, graphs of bounded
genus, or k-page graphs in O(n) space. As a generalization, [17] proposes a scheme
that uses O(n) bits for any c-separable class of graphs (c < 1), i.e. any class of graphs
such that there exists a set of O(nc) nodes that creates two connected components of
approximately equal size when removed. This result was then improved to optimal
compression in [18].

Other approaches exist that are able to compress any graph, but get close to optimality
on specific classes. For example, [48] generalizes a compressed tree representation
(LOUDS [59]) to be able to compress any graph, but the compression density degrades
quickly as the number of edges in the graph increases.

Another interesting approach is the one in [75], which is particularly suited for
Eulerian graphs. More precisely, it is based on storing a linearized version of the graph;
this representation has the same length as the number of edges of the graph if the graph
is Eulerian, and is longer otherwise. Moreover, it allows retrieving both forward and
backward edges for the same computational cost.

5.3.1 Compression of trees

We consider two kinds of trees: labeled trees, and unlabeled trees.

60



5.4. Tree-based

As proven in [32], the number of labeled trees on n nodes is nn−2. Moreover, there is
a simple bijection [86] between a tree and its Prüfer sequence, a sequence of n− 2 numbers
in [0, n) that is obtained by iteratively removing the lowest-label leaf in the tree and
appending the label of its parent to the sequence. It follows that it is possible to compress
a labeled tree in (n− 2) log n bits. Other compressed representations of labeled trees
exist, such as [85], supporting various queries directly on the compressed representation;
however, an in-depth study of this topic is out of the scope of this thesis.

Regarding unlabeled trees, we consider the case of ordered trees, which is the class of
trees that have a distinguishable root node; we also consider two trees to be different if
the order of child subtrees differs.

There is a vast amount of literature [59, 79, 88, 11, 60, 93] on the compressed represen-
tation of such trees, using 2n + o(n) bits (which, as we will shortly see, is asymptotically
optimal). For the purposes of this thesis, it is sufficient to see that there is a simple
bijection between an ordered tree on n nodes and a sequence of balanced parentheses of
2n− 2 parentheses, i.e. sequences where every open parenthesis has a corresponding
closed parenthesis according to the usual rules.

Indeed, consider a depth-first traversal of the tree, that visits children of a node in left-
to-right order. During this visit, we add an open parenthesis to our sequence whenever
we visit a new node, and a closed parenthesis whenever we are done visiting a subtree
and move back to the parent node. It is clear that the sequence of parentheses obtained
this way is balanced, and that any sequence of balanced parentheses corresponds in turn
to an ordered tree.

Hence, ordered trees on n nodes can be compressed in 2n − 2 bits in linear time.
Since any unlabeled tree can be transformed in an ordered tree, the same is true for any
unlabeled tree.

From the bijection between sequences of balanced parentheses and trees, it follows
that the number of ordered trees on n nodes is equal to the n-th Catalan number, hence
the entropy of a n-node ordered tree chosen uniformly at random is

log
(

1
n + 1

(
2n
n

))
= 2n + O(log n)

The balanced parenthesis representation is thus asymptotically optimal.

61



5. COMMON TECHNIQUES FOR GRAPH COMPRESSION

0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 5.1: Example of an adjacency matrix with separation lines that represent the
submatrices for k2-trees. Shaded areas represent submatrices that are filled with 0s and,
hence, do not require further divisions. Only the first two levels of subdivisions are
shown.

5.4 Tree-based

Another well-known approach to graph compression are k2-trees [25], which use a
succinct representation of a bidimensional k-tree on the adjacency matrix of the graph.
More precisely, at each level of the tree the current section of the matrix is split into k× k
axis-aligned submatrices; submatrices that contain no edges are encoded as a 0, while
submatrices that contain edges are encoded as a 1, followed by the representation of
the submatrix again as a k2-tree. The resulting tree is then encoded using a succinct tree
representation like the one described in Subsection 5.3.1. k2-trees allow both forward and
backward neighbourhood queries, as well as querying for the existence of single edges.
This tree-based approach implicitly exploits similarity of adjacency lists by sharing the
most significant bits implicitly in the higher levels of the tree. An example of a k2-tree
can be found in Figure 5.2.

In [26], k2-trees have been improved in multiple ways:

• The value of k is not kept constant, but changed level-by-level to adapt to different
characteristics of the graph at different granularities.

62



5.4. Tree-based

00 01 10 11

00 01 10 11 00 01 10 11 00 01 10 11

1 1 0 1

1 1 1 1 0 0 1 0 1 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.2: First two levels of the k2-tree for the adjacency matrix in Figure 5.1.

• The matrix is partitioned to allow faster construction and more flexibility in the
selection of k.

• Frequent matrices in the bottom layer can be reused of the tree by storing them
in a separate data structure and memorizing indices to a specific sub-array; more
common patterns get lower indices so that bit usage is reduced.

In [24] a new variation on the concept of k2-trees is proposed, where a sub-tree can
also be copied from another region of the adjacency matrix, an approach similar to LZ77
for text compression. This approach, while achieving improved compression ratios,
comes at the cost of quadratic-time construction and significantly increased access time,
but still supports the same operations of k2-trees.

We remark that in [16] an approach to compress data structures for point lookups
in multidimensional data was proposed that is conceptually similar to [24], but limited
to only copying regions that correspond to full nodes. To the best of our knowledge,
this has not been yet applied to graph compression, but should provide an intermediate
approach between k2-trees and [24] in terms of compression ratio and construction times.

63



5. COMMON TECHNIQUES FOR GRAPH COMPRESSION

Finally, in [70] another k2-tree based approach is proposed, in which the submatrices
obtained after a couple of decomposition steps are recombined into a single matrix
which is then represented itself with k2-trees.

5.5 Copying models

Copying models are some of the most successful practical graph compression schemes;
they typically offer fast access to single adjacency lists, but not to reverse neighbours or
single edge queries.

The first model based on edge copying is proposed in [1]. In particular, it proposes to
choose a reference node for some nodes of the graph, and to represent the corresponding
adjacency lists with a bitmask that defines which edges should be copied from the
reference, followed by additional edges.

WebGraph [22, 23] improves the copy-from-reference model by introducing gap cod-
ing of non-copied edges, run-length encoding of copy patterns, using ζ codes (described
in Subsection 2.3.5), introducing interval coding and introducing a length limit on the
maximum reference chain to allow random access during decoding. The WebGraph
scheme is described in more detail in Subsection 5.5.1.

A similar scheme to WebGraph is the one used in Graph Compression by BFS [5]
(GCBFS). However, instead of copying edges from another adjacency list, the proposed
scheme encodes a repetition count for some regions of the gap-coded adjacency lists -
similar to two-dimensional run-length encoding. GCBFS also proposes a reordering
scheme for nodes, discussed in Section 5.7.

Finally, the schemes proposed in [4, 52, 53] split the graph in chunks of consecutive
adjacency lists, encoding each chunk independently using, respectively, Re-Pair style
compression, list copying combined with Deflate encoding, and merging the lists and
encoding the combined list plus a bit-mask encoding which of the lists each edge belongs
to.

5.5.1 Brief summary of WebGraph

Let W and L be global parameters representing the “window size”, which is limited to
speed up compression time, and the “minimum interval length”. For each node u ∈ V,
WebGraph encodes its degree deg(u) and, if deg(u) > 0, the following information for
the adjacency list of u:

64



5.6. Decomposition

1. A reference number r, which can be either a number in [1, W), meaning that the list
is represented by referencing the adjacency list of node u− r (called reference list),
or 0, meaning that the list is represented without referencing any other list.

2. If r > 0, it is followed by a list of integers indicating the indices where the reference
list should be split to obtain contiguous blocks. Blocks in even positions represent
edges that should be copied to the current list. The format contains, in this order,
the number of blocks, the length of the first block, and the length minus 1 of all the
following blocks (since no block except the first may be empty). The last block is
never stored, as its length can be deduced from the length of the reference list.

3. A list of intervals follows; each interval has at least L consecutive nodes that are
not copied from the blocks in point 2.

4. Whatever nodes are left from points 2–3 are called residuals, and they are gap-coded.
Their number can be deduced by the degree, the number of copied edges and
the number of edges represented by intervals. The first residual is encoded by
difference with respect to u (and thus it can be a negative number), and each of
the remaining residuals is represented by difference with respect to the previous
residual, minus 1.

WebGraph represents the resulting sequence of non-negative integers by using ζ

codes [23], a set of universal codes particularly suited to represent integers following a
power-law distribution.

Moreover, to guarantee fast access to individual adjacency lists, WebGraph limits the
length of the reference chain of each node. In particular, a reference chain is a sequence
of nodes u1, . . . , u` such that node ni+1 uses node ni as a reference r. Every chain has
length ` ≤ R, where R is a global parameter.

Indeed, to decode a node i that uses r as a reference, we need to first decode r.
However, r itself may use a reference. Having a limit on the length of a reference chain
ensure that no more than R nodes will ever be required to decode a given adjacency list,
giving an upper bound on the decoding time that is proportional to R times the length
of an adjacency list.

5.6 Decomposition

Decomposition-based approaches share one recurring theme: splitting the input graph
into one or more parts, which get encoded separately (possibly with entirely different

65



5. COMMON TECHNIQUES FOR GRAPH COMPRESSION

schemes). One of the first instances of this approach appears in [97], which uses different
Huffman codes based on whether the destination node belongs to the same web domain
or not.

In [87], the graph to be encoded is split into groups, and then for each group edges
are encoded separately; for edges between groups, either the edges are represented
directly or their complement is, depending on which is smaller.

Similarly, [63] groups together nodes with similar adjacency lists, and then collapses
links between different groups, storing the information needed to reconstruct those links
in a separate structure.

In [8], links within local groups of nodes are encoded with a special representation
that takes into account commonly occurring patterns, such as fully connected subgraphs.

In [35], the Re-Pair approach is combined with k2-trees: the input graph is divided
by domain, then k2-trees are used to encode edges inside a given domain, and Re-Pair is
used for all other edges.

Another approach is to use techniques for graph summarization. This is done for
example in [96], where the graph is grouped in clusters of nodes with similar adjacency
lists; the graph is then encoded as a graph of connections between clusters, together with
two graphs of corrections, which are edges that should be either added to or removed
from the edges defined by the clusters. The graph on the clusters and the correction
graphs are encoded using any graph compression scheme, such as WebGraph or GCBFS.
As graph summarization techniques are typically lossy, and otherwise decompose the
graph into parts to be compressed with other techniques, a more in-depth discussion is
out of scope for this thesis; the reader interested in more details can refer to [71].

Finally, another class of approaches [56, 57], building upon and generalizing the
ideas of [28], finds dense subgraphs in the input graph, defined as pairs (S, C) such that all
possible edges between S and C are present. We remark that when S = C this definition
corresponds to a clique, and when C ∩ S = ∅ it corresponds to a complete bipartite
subgraph. All the remaining edges are then compressed with k2-trees or with WebGraph.

5.7 Reordering

Permuting a graph to increase compression efficiency is a well-studied problem, with
many different variations that are known to be NP-complete; for example, [40] shows
that finding the permutation of the graph that minimizes the sum of logarithms of the
gaps between adjacent nodes is a NP-complete problem.

66



5.7. Reordering

Other variations of this problem are also NP-complete. For example, if we denote
by π(v) the label assigned to vertex v, the problems of finding the permutation π that
minimizes either

∑
(u,v)∈E

|π(v)− π(u)|

or

∑
(u,v)∈E

log(|π(v)− π(u)|+ 1)

are NP-complete, as seen in [34].
As it is not feasible to find an optimal solution to the graph reordering problem,

multiple heuristics have been proposed to produce good orders.
[5] simply orders the graph in BFS order.
In [20, 21], the Layered Label Propagation ordering algorithm is proposed, which

produces an ordering of the nodes by assigning labels to each node of the graph and
repeatedly updating each label according to local rules.

In [34], an ordering based on shingles is proposed: for each node, a low-dimensional
locality-sensitive hash of its adjacency list is computed; nodes are then sorted in lexico-
graphical order of their shingles. The effect of the proposed order is to cluster together
nodes with similar adjacency lists, as they are likely to share a long prefix of their hash.

The Recursive Bisectioning approach in [40] proceeds by splitting the graph into
two parts and moving nodes between the components based on an estimate of the
compression cost of the proposed partition. The algorithm then proceeds recursively in
the two halves of the partition.

In [95], a DFS order is proposed to improve k2-tree compression efficiency, with the
peculiarity that the next node to be visited is chosen as the neighbour that maximizes
the Jaccard similarity between the adjacency lists of the current node and the candidate
node.

In [13], ordering nodes according to decreasing in-degree is proposed, since the
compression scheme they use requires a number of bits proportional to the logarithm of
the label of the destination node. As nodes of high in-degree would receive lower labels,
this reduces the total bit expenditure.

67





C
H

A
P

T
E

R

6
GRAPH COMPRESSION IN THEORY

M ULTIPLE GRAPH MODELS have been defined in the literature, each of them
suited to represent the characteristics of specific classes of graphs. This
chapter is dedicated to the study of the entropy of the graphs sampled from

these distributions.

We will also provide, for multiple models, an encoding scheme that is optimal, i.e.
uses a number of bits equal to the entropy (except for lower-order terms), or almost-
optimal.

Many of the models described here rely on a process of incremental construction. It is
often easy to achieve optimal compression ratio when the construction order is known;
however, achieving optimal compression when the order is unknown can be an harder
problem. Thus, we will also study the problem of compressing the structure of graphs
sampled from these modes, with unknown labels, and provide algorithms or hardness
proofs.

6.1 Erdös-Rényi

The Erdös-Rényi random graph model [43] is the oldest and best known model for
random graphs. There are two variations of this model, which present similar properties:

69



6. GRAPH COMPRESSION IN THEORY

• G(n, m) (the Erdös-Rényi variant) is a graph on n vertices with m edges (of course
it is necessary that m ≤ (n

2)); all the graphs with this number of edges are equiprob-
able.

• G(n, p) (the Gilbert variant [50]) is a graph on n vertices; every edge of the graph
is present with probability p, independently of other edges.

It’s easy to see that the entropy of a graph drawn from the G(n, p) random graph
model variant is (n

2)Hp. By the formulas in Section 2.1, we can compute the entropy of
the G(n, m) model as

log
(
(n

2)

m

)
=

(
n
2

)
H

m
(n2) + O(log n)

Thus, by choosing p = m
(n

2)
, the two models have the same entropy up to lower-order

terms.

A simple compression scheme, that just uses a Binary Arithmetic Coder (see Sub-
section 2.4.2) to encode whether each edge is present or not, using as a probability the

fraction of edges that is present, will utilize a number of bits equal to (n
2)H

m
(n2) , which is

in expectation within O(log n) of the entropy of a graph sampled from this class.

6.2 Stochastic Block Model

The Stochastic Block Model can be considered a generalization of the G(n, p) random
graph model; it is extremely common for modeling graphs for clustering problems.

It is defined by a partition C1, . . . , Ck of {1, . . . n}, called the communities of the
resulting graph, and a symmetric probability matrix P of size k× k; The resulting graph
has n nodes, and every edge (u, v) is present independently with probability Pij, where
u ∈ Ci and v ∈ Cj. If k = 1, this corresponds to a G(n, P1,1) random graph.

If the communities are known, it is easy to see that a compression scheme similar to
the one proposed above for Erdös-Rényi random graphs achieves entropy bounds, up to
the cost of storing the communities (which is linear in n, hence not the dominant term as
n grows, if k is fixed).

Retrieving the community structure of a graph belonging to this family is a well-
studied problem in the literature, and a few polynomial-time algorithms are know that
compute the community structure successfully w.h.p. under mild assumptions.

70



6.3. Uniform attachment

For example, the algorithm proposed in [46] succeeds with high probability in the
case in which Pii = p, Pij = q if i 6= j, p is sufficiently large, and q is sufficiently smaller
than p.

Finally, we remark that community identification is not necessary to compress a
graph from the Stochastic Block Model in optimal space using polynomial time: a recent
work [15] shows that a suitably-chosen adaptive probability model, used in conjunction
with arithmetic coding, achieves optimal compression.

6.3 Uniform attachment

The uniform attachment model [10] is one of the simplest models that can be thought of as
being constructed incrementally. The construction is based on two parameters, n and d.
The process starts with a graph with d nodes and no edges, and proceeds by adding one
node at a time until n nodes are present. Whenever a node is added, we select d existing
nodes uniformly at random and add links from the new node to those nodes.

The resulting graph is in a bijection with the set of sets of neighbours that were
chosen at each step. As each choice of sets is independent, we can write the entropy of a
graph from this random family as

H(UA(n, d)) =
n

∑
i=d

log
(

i
d

)
=

=
n

∑
i=d

log i!− log d!− log(i− d)! =

= −(n− d) log d! +
n

∑
i=d

d−1

∑
j=0

log(i− j) =

= −(n− d) log d! +
d−1

∑
j=0

(
log(n− j)!− log(d− j− 1)!

)
=

= d log n!− (n− d) log d!

−
d−1

∑
j=0

(
− log d! + log(d− j− 1)! +

j−1

∑
k=0

log(n− k)

)
=

= d log n!− (n− d) log d!

−
d−1

∑
j=0

(
− log(d− j)−

j−1

∑
k=0

log(d− k) +
j−1

∑
k=0

log(n− k)

)
=

71



6. GRAPH COMPRESSION IN THEORY

= d log n!− (n + 1) log d!−
d−1

∑
j=0

j−1

∑
k=0

log
n− k
d− k

=

= d log n!− (n + 1) log d!−
d−1

∑
j=0

(d− 1− j) log
n− j
d− j

=

= d log n!− n log d! + O(log n)

If the construction order is known, it is trivial to reconstruct the sets that were selected
at each step, and thus to achieve a compression ratio matching the entropy of this model
of graphs.

We now consider the problem of compressing the structure of the graph, ignoring
the labels (and thus without knowing the construction order). We will call an unlabeled
UA(n, d) graph a ŨA(n, d) graph. As it is possible to recover a UA(n, d) graph by
storing only a permutation of n elements and a ŨA(n, d) graph, it follows that the
entropy of this family of graphs is at least

H(ŨA(n, d)) ≥ H(UA(n, d))− log n! = (d− 1) log n!− n log d! + O(log n)

Note that a UA(n, d) graph has d(n − d) edges. Thus, assuming d constant and
n sufficiently large, it is not possible to compress a UA(n, d) random graph using a
constant number of bits per edge, as the entropy per edge is Ω(log n).

We now provide a compression scheme for ŨA(n, d) graphs that can be computed
in polynomial time and prove that it achieves optimality.

Lemma 14. A ŨA(n, d) graph has, for a large enough n, arboricity d.

Proof. We recall that the arboricity of a graph G is the minimum number k such that there
exist k disjoint forests whose union contains all the edges of G.

We can obtain a decomposition in d forests of a ŨA(n, d) graph as follows.
For a node i not in the initial set D of d nodes, let ni1, . . . , nid be the nodes (with

nij < i) that were chosen as targets of edges during the construction of the graph.
We decompose the edges of our graph in the sets

Fj = {(i, nij) : i ∈ N(G) \ D}, j = 1 . . . d

All the Fj are clearly acyclic, as every node has a single edge towards a node with
lower label. Thus, {Fj : j = 1 . . . d} is a valid decomposition in d forests, and the
arboricity of a ŨA(n, d) graph is at most d.

Given that a forest on n nodes has at most n− 1 edges, and given that a ŨA(n, d)
graph has d(n− d) edges, it follows that its arboricity is at least d(n−d)

n−1 , which is strictly

72



6.3. Uniform attachment

greater than d− 1 if n > d2. Thus, for sufficiently large n, the arboricity of a ŨA(n, d)
graph is exactly d.

Lemma 15. An unlabeled graph with arboricity d, with a known decomposition in forests, can
be compressed in d(d− 1)(n− 1) log(n + 1)e+ 2n bits.

Proof. It is sufficient to store the set of forests that form our graph. We do so by adding a
single node n + 1 to every forest, and connecting it to a single node for each connected
component of the forest, thus obtaining a set of d trees.

As we are only interested in storing the edges of the graph, and not the indices of
each node, we can store one of the trees using the Balanced Parenthesis scheme described
in Subsection 5.3.1, using in total 2n bits.

For the remaining d− 1 trees, it is necessary to also store the indices of their nodes
with respect to the first tree, to be able to properly reconstruct the graph.

We can represent each tree using its Prüfer sequence: the end result is a sequence of
(d− 1)(n− 1) numbers in the [1, n + 1] range, that can thus be stored by an Arithmetic
Coder (using uniform probabilities) in d(d− 1)(n− 1) log(n + 1)e bits.

We recall the following theorem:

Theorem 16 ([49]). The arboricity of a graph and the corresponding decomposition in forests
can be computed in polynomial time in the size of the graph.

We remark that in graphs belonging to the Uniform Attachment model, the degeneracy,
or coloring number [44] of the graph is equal to its arboricity if n is large enough. We
recall that the degeneracy is described as the smallest value k such that every subgraph
contains a node of degree at most k. Equivalently, a graph has degeneracy k if it can
be permuted in such a way that the number of edges towards nodes of higher index is
at most k. It is clear from the construction process of UA(n, d) graphs that they have
degeneracy d. Moreover, we can construct d forests that cover the graph by selecting one
forward edge per node in each forest. Since the permutation can be computed in O(m)

time [76], it follows that the optimal decomposition in forests for this class of graphs can
be found in linear time.

Thus, we obtain the following theorem:

Theorem 17. An unlabeled graph G generated with the Uniform Attachment process can be
compressed optimally (up to lower order terms) in polynomial (linear) time.

73



6. GRAPH COMPRESSION IN THEORY

Proof. We begin by applying Theorem 16 to obtain in polynomial time an optimal de-
composition of G in d forests. Equivalently, we compute the forward-degree-minimizing
permutation of G to compute an optimal decomposition in O(nd) time.

By Lemma 15, such a graph can be compressed in (d− 1)(n− 1) log(n+ 1) +O(n) =
(d− 1)n log n + O(n) bits. By Lemma 14, d is also the second parameter that defines
the distribution that G is drawn from, thus its entropy is (d− 1) log n! + O(n) = (d−
1)n log n + O(n). Thus, the proposed scheme is optimal up to lower order terms.

6.4 Copy model

We now consider another model that proceeds by incrementally constructing a network.
This model is parameterized by n, the total number of nodes, d, the out-degree of every
node, and α, a copy probability.

The model is constructed starting with a complete graph on d + 1 nodes. Then, as is
done for the Uniform Attachment model, nodes are added one by one, each of them with
d edges, going from the new node to an existing one. However, the edges are picked
differently:

• First, a reference node r is chosen among the existing nodes, uniformly at random.

• For each of the d edges, with probability α the corresponding edge is copied from
the corresponding outgoing edge of r

• Otherwise, a destination node is chosen uniformly at random among the existing
nodes.

We denote a graph from this model as C(n, d, α). We remark that, when α = 0, this
model corresponds exactly to the Uniform Attachment model described above.

In general, during the generation of a graph according to this model, (1− α)d edges
per node (on average) are chosen using the same procedure used for UA(n, (1− α)d).
Thus, we can bound from below (up to lower order terms) the entropy of a copy model
graph as:

H(C(n, d, α)) ≥ d(1− α) log n! + O(n)

We remark that when α is very close to 1, the model becomes somewhat uninteresting:
indeed, in the extreme case of α = 1, each node has the same list of out-edges as one of
the initial d + 1 nodes. Thus, we will focus on the case where α is not very close to 1.

74



6.4. Copy model

We call C̃(n, d, α) a graph taken from the copy model without node labels. As before,
we trivially have

H(C̃(n, d, α) ≥ (d(1− α)− 1) log n! + O(n)

We now present a compression scheme that achieves close to optimality on this class
of graphs (up to lower-order terms). A variant of this compression scheme can be found
in [1].

The compression scheme uses an auxiliary forest F to encode the reference used
by each node, where a parent-child relationship between p and c means that node p is
chosen as a reference for node c. A node that is not a child of any parent is encoded with
no reference.

The encoding proceeds as follows:

• The forest is stored using, like for the first forest in Uniform Attachment, 2n bits.

• For each node, for each of its d out-edges, a bit is stored to represent whether the
corresponding edge was copied from the reference or not. In practice, the number
of bits can be reduced by using e.g. a Binary Arithmetic Coder.

• For every edge that is not copied, dlog ne bits are used to store the destination of
the non-copied edge. An arithmetic coder could be used to reduce this number to
≈ log n, but this is not needed for our purposes here.

We now need to determine a good choice of a forest F. This can be done in polynomial
time, giving a total compressed size close to the entropy bound:

Theorem 18. There exists a polynomial-time algorithm that determines a forest F such that the
approach described above uses in expectation at most d(1− α)n log n + O(n) bits.

Proof. We construct an auxiliary complete, directed, weighted graph as follows:

• Its nodes are the same nodes as the original graph, plus one.

• There are two edges between each pair of distinct vertices, in both directions.

• The weight of each (u, v) edge is given by the number of edges that can be copied
from node u to node v. If either of u and v is the auxiliary node, the weight of
(u, v) is 0.

We then find a maximum spanning tree of this graph [64] in O(n2 log n) time.

75



6. GRAPH COMPRESSION IN THEORY

This tree corresponds to a forest (obtained by removing the auxiliary node) that
minimizes the number of edges that are not copied. Note that the copy choices made
during the construction of the C̃(n, d, α) graph also correspond to a valid forest on this
auxiliary graph.

As the forest corresponding to the original copy choices has a total weight (i.e.
number of copied edges) equal to dαn in expectation, the total number of non-copied
edges corresponding to the maximum weight forest will be in expectation at most d(1−
α)n, which proves the theorem.

6.5 Preferential attachment (Barabási-Albert)

We now describe the Barabási-Albert random graph model [10], one of the most well-
known models for generating graphs with Zipf degree distributions.

Similarly to the Uniform Attachment, graphs from the BA(n, d) family are also
generated incrementally, starting with a complete graph on d + 1 nodes. At every time
step, a node is added to the graph, and d edges are added to the new node. However,
differently from the UA(n, d) model, the choice of the new edges is not uniform. In
particular, if we denote δi(j) the degree of the j-th node of the graph when i nodes are
present in total, the probability of connecting node i + 1 to node j is given by

δi(j)

∑i
k=1 δi(k)

=
δi(j)
2id

It follows that it is likely for nodes that already have a large number of edges to
gain even more edges. This is the “rich get richer” effect, which is often observed in
real-world networks.

We will now prove that H(BA(n, d)) ≥ dn log n + o(n log n); as a BA(n, d) also has
arboricity d like a UA(n, d) graph, it follows that the scheme described in Section 6.3 is
also optimal for the unlabeled version of BA(n, d) graphs, and thus Theorem 17 has an
equivalent version:

Theorem 19. An unlabeled graph G generated with the Preferential Attachment process can be
compressed optimally (up to lower order terms) in polynomial (linear) time.

We remark that [72] proves a lower bound on the entropy of a ˜BA(n, d) graph
of n(d − 1) log n + O(n log log n) for the case d ≥ 3. As discussed in Section 6.3, a
lower bound of nd log n + O(n log log n) on a BA(n, d) graph is equivalent; hence, the

76



6.5. Preferential attachment (Barabási-Albert)

following provides an alternative proof of the result in [72] as well as an extension of the
proof to the d = 2 case (the case d = 1 is trivial).

To prove this result, we follow a similar procedure to [34]. In particular, we identify
a subset G(n, d) of all the Preferential Attachment graphs with the property that

• P(G ∈ G(n, d)|G ∈ BA(n, d)) = 1−O(n−3), i.e. a BA(n, d) graph is in G(n, d)
with high probability.

• P(BA(n, d) = G) ≤ P ∀G ∈ G(n, d), i.e. there is an upper bound on the probability
of obtaining each specific graph in this subset.

It then follows from the definition of entropy that

H(BA(n, d)) = ∑
G∈BA(n,d)

P(G) log
1

P(G)
≥ ∑

G∈G(n,d)
P(G) log

1
P = (1−O(n−3)) log

1
P

We choose our family G(n, d) as the set of all the GA(n, d) graphs such that

δi(j) ≤ d

√
i
j

ln3 n ∀1 ≤ j ≤ i ≤ n

It is shown in [39] that this indeed happens with probability 1−O(n−3).
In this family of graphs, let S be the set of nodes that are neither connected to any of,

nor one of, the first T = n
4d2 ln8 n

nodes.
By our choice of family of graphs, we have that

T

∑
j=1

deg(j) = δn(j) ≤ d
√

n ln3 n
T

∑
j=1

1√
j

Applying the inequality

2
√

T − 2 ≤
T

∑
j=1

1√
j
≤ 2
√

T

which can be easily proven by induction [55], we have that

T

∑
j=1

1√
j
= 2
√

T + O(1)

Thus,

T

∑
j=1

deg(j) ≤ d
√

n ln3 n
(

2
√

T + O(1)
)
=

77



6. GRAPH COMPRESSION IN THEORY

≤ 2d
√

n ln3 n
√

n
2d ln4 n

+ O(
√

n ln3 n) =

≤ n ln−1 n + O(
√

n ln3 n)

It follows that |S| ≥ (1 − 2 ln−1 n)n if n is sufficiently large, as the set of nodes
that have an edge towards the first T nodes is of size n ln−1 n + o(n ln−1 n), and T =

O(n ln−8 n).
Let us now fix G ∈ G(n, p), and give an upper bound on P(BA(n, d) = G). To do

so, we shall consider an edge (i, j) with i > j and i ∈ S; there are d(1− 2 ln−1 n)n such
edges.

As i ∈ S, it then follows that i ≥ j > T by definition of S. The probability of this edge
to be selected is thus

δi(j)
2id
≤ d

√
ij−1 ln3 n
2id

=
ln3 n
2
√

ij
≤ ln3 n

2T
=

2d2 ln11 n
n

By the product rule, it follows that

P(BA(n, d) = G) ≤
(

2d2 ln11 n
n

)nd(1−2 ln−1 n)

= P

We now just need to compute log 1
P :

log
1
P = (1− 2 log−1 n)(nd log n− nd(1 + 2 log d + 11 log ln n)) =

= nd log n + O(nd log log n)

which proves the thesis.

6.6 Simplified Copy Model

Finally, we turn our attention to the model proposed in [34], which has constant entropy
per edge while still displaying a Zipf degree distribution.

The model starts from a seed graph Gs, with t0 nodes, each of out-degree d. At each
time step, a node x is chosen uniformly at random, and a new node y is added in position
x + 1 (shifting all other nodes accordingly); an edge from y to x is then added to the
graph, and d− 1 edges are copied (choosing uniformly at random without replacement
- or equivalently, choosing exactly one non-copied edge) from x to y. The process is
repeated until n nodes are present in the graph.

78



6.6. Simplified Copy Model

There is a simple bijection between the set of graphs generated by this procedure
and random recursive forests on n nodes with t0 roots, and a [0, d) label on each node.
Indeed, we can construct such a forest as we build the graph, adding a new leaf to a
node whenever the corresponding graph node is chosen as a copy source, and using
as its label the index of the edge that is not copied. Different graphs will also result in
different forests.

From this bijection, it follows immediately that the entropy of this model is given by
the log of the number of rooted recursive forests with t0 roots (which behaves like the
number of rooted trees for large n), plus the entropy of the labels, for a total entropy of
log n! + n log d. As was noted in [34], the forest can be reconstructed in linear time from
the graph, thus this model (with labels) can be compressed within entropy bounds in
polynomial time.

We now consider the case in which labels are removed from the graph. As this
corresponds to removing node labels from the corresponding labeled forest, by using a
tree representation such as the ones described in Subsection 5.3.1 we can compress these
structures in (2 + log d)n bits, resulting in (2 + log d)/d bits per edge.

However, this representation is not optimal, as the number of unlabeled rooted trees
is asymptotic to (as shown in [80]) Dαnn

3
2 , where D ≈ 0.4399 and α ≈ 2.955. Moreover,

the process of producing a random rooted forest and removing the labels does not result
in an uniform distribution over unlabeled trees; as such, (log α + log d)n + o(n) is just
an upper bound on the entropy of this model.

As a final remark, we note that there exist ranking and unranking polynomial-time
algorithms for unlabeled rooted trees on n vertices [101, 104]. These algorithms provide
a bijection between the set of all unlabeled rooted trees on n node and an appropriate
interval [0, t(n)) that can be computed (and inverted) in polynomial time. Hence, there
is a polynomial-time algorithm to compress this family of graphs down to (log α +

log d)n + o(n) bits, which matches the obtained upper bound on the entropy of this
model of graphs.

79





C
H

A
P

T
E

R

7
GRAPH COMPRESSION IN PRACTICE

T HE ZUCKERLI COMPRESSION SCHEME is based on the WebGraph representa-
tion [22, 23] together with the novel integer entropy coding techniques presented
in Chapter 2. In this chapter, we present the scheme and the results of an experi-

mental evaluation.

This chapter is divided in two parts; the first part is dedicated to presenting the
Zuckerli scheme as it was published in [98], which supports fast decompression in either
the full decompression or the list decompression cases.

List decompression can allow us to run some graph algorithms directly on the
compressed representation on the graph: several fundamental algorithms, such as a
graph traversal, are based on partially scanning adjacency lists that are decompressed
during the scan.

On the other hand, we do not want to support edge queries for two reasons: it
degrades the performance of scanning an adjacency list, and many of the well-known
graph algorithms hardly require to access few random items of an adjacency list without
accessing the list from the beginning.

Moreover, scanning a list is so fast in our implementation that any attempt to jump
parts of it would just degrade the performance due to the extra machinery required.

We also do not consider the problem of querying reverse neighbours, since many
algorithms only require scanning either out-neighbours or in-neighbours, but not both.

81



7. GRAPH COMPRESSION IN PRACTICE

Section 7.2 describes the Zuckerli high-level encoding scheme, which, in brief, con-
sists in block-copying, that is re-using parts of the adjacency lists of previous nodes to
encode the adjacency list of current nodes, delta-coding of values that are not copied and
context-modeling of all the values to improve compression. This section also describes
heuristics to improve the encoding choices made by the encoder. We then report results
of the experimental study in Section 7.3.

Finally, the second part of this chapter, specifically Section 7.4, is dedicated to explor-
ing how much the full decompression scheme can be improved by the techniques in
Chapter 4, at the cost of sacrificing the high decoding speed of the “baseline” Zuckerli
scheme. We also propose a novel algorithm for reference selection, inspired by LZ77
match finding algorithms and the shingle ordering heuristic from [34].

7.1 Encoding Integers

Zuckerli modifies the adjacency lists of the graph, which are sequences of integers, to
produce other sequences of integers that can be encoded more succinctly.

Zuckerli uses the hybrid encoding for arbitrary integers described in Chapter 3.

When list decompression is required, Zuckerli combines the Hybrid Integer Encoding
with Huffman coding (see Subsection 2.4.1).

When only full decompression is required, Zuckerli uses Asymmetric Numeral
Systems (ANS) (see Subsection 2.4.3) instead of Huffman coding.

When list decompression is supported, one disadvantage of ANS (as well of as other
encoding schemes that can use a non-integer number of bits per encoded symbol) is
that it requires keeping track of its internal state. For decoding to successfully be able
to resume from a given position in the stream, it is also necessary to be able to recover
the state of the entropy coder at that point of the stream, which would cause significant
per-node overhead if using ANS. Thus, in this case, Zuckerli switches to using Huffman
coding.

7.1.1 Negative integers

We encode an integer s that is not known to be positive using the following, easy to
reverse bijection between integers and natural numbers, introduced in [22]:

x →

2 · x if x ≥ 0

−2 · x− 1 if x < 0
(7.1)

82



7.2. Graph compression in Zuckerli

7.2 Graph compression in Zuckerli

In this section, we summarize the novel aspects introduced by Zuckerli in relation to
WebGraph.

Firstly, Zuckerli entropy-encodes the integers, as described in Section 7.1. This is in
contrast with WebGraph’s ζ coding [23].

Secondly, Zuckerli splits the nodes of G into chunks of size C, where the first chunk
contains the first C nodes in G, the second chunk contains the following C nodes in G,
and so on. When list decompression is not required, we set C = ∞. The encoding of the
degrees of the nodes operates independently in each chunk. By doing so, it is sufficient to
decode the degrees of the chunk of a given list to be able to decode its degree; this is a
strict requirement to support list decompression.

It can be observed experimentally (see Section 7.3) that the representations of node
degrees requires a significant amount of bits. To improve compression, Zuckerli rep-
resents degrees via delta encoding, i.e. as the difference between the current degree
and the previous one. As this procedure may produce negative numbers, deltas are
represented using the transformation described in Equation (7.1).

Thirdly, while Zuckerli uses reference lists and blocks in the same way as WebGraph
(points 1 and 2 in Subsection 5.5.1), the choice of the reference list and reference chain is
more sophisticated. We defer its description to Subsection 7.2.2.

Fourthly, Zuckerli does not use intervals, in contrast with WebGraph (point 3 in
Subsection 5.5.1). As a form of simplification, the special representation for intervals
is replaced with run-length encoding [91] of zero gaps. When reading residuals, as
soon as a sequence of exactly L′ zero gaps is read, for a global parameter L′, another
integer is read to represent the subsequent number of zero gaps, which are not otherwise
represented in the compressed representation. Since ANS does not require an integer
number of bits per symbol, and allows for very efficient representations of sequences of
zeros, we set L′ = ∞ if list decompression is not supported.

Finally, Zuckerli modifies the representation of the residuals, which are stored via
delta encoding. The representation chosen by WebGraph (point 4) does not exploit
the fact that an edge might already be represented by block copies (or intervals). For
example, consider the case in which an adjacency list contains edges {1, 2, 3, 4, 8, 9},
and edges {1, 2, 4} are already represented by block copies. Residuals would then be
{3, 8, 9} and the second residual would be represented by WebGraph using a delta of
4 = 8− 3− 1. However, this representation does not take into account the fact that
not all possible delta values smaller or equal to 4 are useful. In this example, reading a

83



7. GRAPH COMPRESSION IN PRACTICE

1reference node (6) 2 4 5 7 10 11 12

1current node (7) 2 3 4 8 9 10 11 12 13

3block lengths 2 3

3block encoding 1

3residuals 8 9 13

−4residuals delta 3 0 0

2list repr. 1 2 3 1 −4 3 0 0

Figure 7.1: Example encoding of an adjacency list. We are encoding the adjacency list
of node 7 using the adjacency list of node 6 as a reference. Highlighted in blue are the
edges that the two nodes have in common, i.e. the blocks to be copied from the reference
node adjacency list. The block encoding is performed as described in Subsection 5.5.1
(point 2). Highlighted in red are the residual values, which are stored as follows: the first
residual is encoded as the delta between the current node and the actual residual, while
the next values are encoded as d− 1, where d is the value to add to the previous residual,
implicitly skipping any possible edges that have already been added though blocks. The
boxes in the final list representation show, in order, the data that gets encoded: the delta
of the degree of the current node with respect to the previous node, the delta (in absolute
value) of the reference node with respect to the current node, the number of blocks, the
block encoding, the residual deltas.

delta of 0 from the compressed file would result in an edge value of 4, which would be
either invalid or superfluous, as this edge is already represented through blocks. Thus,
Zuckerli modifies the delta encoding of residuals by subtracting the number of edges
that are between the previous and the current residual edge and that are already known
to be encoded using blocks. In this case, residual edge 8 would be represented as 3
instead of 4, as there are only 3 possible edges between 3 and 8 that are not already
represented in the block copies.

A full example description of how Zuckerli would represent an adjacency list is
shown in Figure 7.1.

7.2.1 Context management

As mentioned in Section 7.1, Zuckerli uses Huffman coding and ANS with multiple
contexts, i.e. distinct probability distributions. To the best of our knowledge, while
this is a well-known encoding technique, its application to graph compression is new.
Here we detail how symbols are split among the different contexts. We remark that the

84



7.2. Graph compression in Zuckerli

scheme described here produces a small number of contexts (below a thousand), hence
the context management techniques of Chapter 4 are not used.

Inside each chunk, the symbol that represents the delta-coded degree with respect
to the previous node is used to choose the distribution for the current node. Similarly,
inside a chunk, the reference number used for the last list is used to choose a distribution
for the current one.

When compressing blocks, a separate distribution is used for the first block, all the
even blocks, and all the odd blocks. This is because the first block is the only one that
does not have its length reduced by 1, and we expect the number of edges to be copied
(odd blocks) to have a different distribution from the number of edges to be skipped
(even blocks), depending on the graph.

For delta-encoding the first residual with respect to the current node, the symbol that
would be used to represent the number of residuals defines which distribution to use.
This is because a list with a high number of residuals will likely be harder to predict.

Finally, for all other residual deltas, the symbol that was used to encode the previous
one is used to choose the corresponding probability distribution for the current delta.

We remark that each probability distribution used by Zuckerli is stored in the com-
pressed file, and is not changed as edges are decoded.

7.2.2 Choice of reference list and chain

We explain how Zuckerli selects reference lists to be used during compression. As
previously discussed, we may either represent a node’s list explicitly or, if we use a
reference, we represent the difference from the list of its reference.

To make an effective choice, we need to estimate the amount of bits that the algorithm
will use to compress an adjacency list using a given reference. Since we use entropy
coding, this is not a simple task, as choices for one list might affect probabilities for all
other ones.

We choose to use an iterative approach previously used by Zopfli [3], a general-
purpose compression algorithm. We initialize symbol probabilities with a simple fixed
model (all symbols have equal probability), and then choose reference lists assuming
these will be the final costs. We then update the symbol probabilities given by the chosen
reference lists and repeat the procedure with the new probability distribution. This
process is then repeated a constant number of times.

We now consider the two types of compression separately.

85



7. GRAPH COMPRESSION IN PRACTICE

7.2.3 Full decompression

In this case, there is no limitation on the length of the reference chain used by a single
node, i.e., a reference node may itself have a reference node, and so on; we obtain an
optimal solution with the greedy strategy, choosing the reference node that gives the
best compression out of all the ones available in the window of the current node, i.e., the
W preceding nodes.

7.2.4 List decompression

To decompress a single list, we must also decompress its reference chain: when access to
single lists is requested, more care is required to select good references while avoiding
reference chains longer than a given threshold R.1

For example, imagine these are the lists of nodes 1,2 and 3:

1 : {3, 4, 7}, 2 : {3, 4, 7, 9}, 3 : {4, 7, 9}

We may want to represent 2’s list using 1’s as a reference: this way we do not need to
represent 3, 4, and 7, but just the node 9 in the difference; similarly, if we represent 3’s
list using 2’s as reference, we just need to omit node 3. However, in order to decompress
3’s list we will need to read (hence decompress) the list of its reference 2, which in turn
requires decompressing 1’s list. The longer the chain, the longer the decompression time:
the parameter R allows us to keep this overhead under control.

We can formally state the problem of choosing the references as follows. We are
given a directed acyclic graph D, where the nodes represent the adjacency lists. There is
an arc between two nodes if one adjacency list can refer to the other. The weight of the
arc corresponds to the number of bits saved by choosing that reference. The larger the
weights, the better the compression gain. Thus, we aim at finding a maximum-weight
directed forest O for D, where each node has out-degree at most one (its reference),
and there are no directed paths longer than R (i.e. a reference chain longer than R).
Finding an optimal solution seems not trivial, and it is unclear whether it can be done in
polynomial-time. 2

Zuckerli uses an efficient heuristic with approximation guarantees. Given D, it first
builds the optimal directed forest F, ignoring the constraint that directed paths cannot
be longer than R (this corresponds to the solution of the full decompression case).

1Each node u may refer in turn to any of its W preceding ones during a hop, which makes R unrelated
to W: indeed, R is the maximum number of these hops.

2We speculate it may be NP-complete due to similarities with maximum directed cuts [83].

86



7.2. Graph compression in Zuckerli

Instead of solving our problem on D as we formulated above, Zuckerli computes an
optimal sub-forest H on F, as the latter be found by the following dynamic programming
algorithm, answering the question “what is the sub-forest H of maximum weight that is
contained in the current subforest of F and does not have paths of length R + 1?”.

Clearly, H is not necessarily the optimal solution for D, as it is computed for its
subgraph F. However, there may still be arcs of D that were not in F, but can now be
added to H without creating long chains. Zuckerli tries to extend H with such arcs in a
greedy way, obtaining the final heuristic solution.

7.2.5 Approximation guarantee

Interestingly, our heuristic algorithm not only works quite well in practice, but it also
provides a guaranteed (1− 1

R+1 )-approximation of the optimal solution on D, i.e. of the
maximum number of bits to be saved.

To see why, let O be the optimal solution, and let wO, wF and wH be the total weights
of O, F, and H, respectively.

Next, let H′ be a sub-forest of F obtained by splitting the arcs of F in R + 1 groups,
depending on their distance from the root of their tree in F modulo R + 1, then removing
the group of smallest weight; it is evident that H′ has no paths longer than R, and that its
weight wH′ is at least (1− 1

R+1 )wF, as the weight of smallest of the R + 1 groups could
not be more than 1

R+1 wF.

Now observe the following:

• wF ≥ wO, as F is the optimal solution for R = ∞, a problem with less constraints.

• wH ≥ wH′ ≥ (1− 1
R+1 )wF, as H′ is a sub-forest of F, and H is the best sub-forest

in a search space that contains the optimal sub-forest of F (both with path length
bounded by R).

• Thus, wH ≥ (1− 1
R+1 )wF ≥ (1− 1

R+1 )wO, which proves the approximation bound.

7.2.6 Details on computing the optimal sub-forest of F

Given a sub-forest F′ of F rooted in the node x, let Mi(x) be the maximum weight
sub-forest of F′ that has no paths longer than R, and in which the root x is in no path
longer than i. If rj are the roots of F,

⋃
j MR(rj) is the optimal sub-forest of F we are

looking for. We implement a dynamic programming procedure based on the following

87



7. GRAPH COMPRESSION IN PRACTICE

invariant: if, for all sub-forests rooted in each child y of x, we know Mi(y) for each
i ∈ {0, . . . , R}, we can compute Mi(x) for each i ∈ {0, . . . , R}.

First, as paths are always directed from nodes to their parent, observe that we can
consider each child y of x independently. Furthermore, Mi(x) is computed as follows: if
the arc (x, y) is taken, then y in its sub-forest may only be part of paths of length at most
i− 1; on the other hand, if we do not choose (x, y), y may be included in paths of any
length up to R. Finally, for the base case, observe that for any leaf l of F, Mi(l) = ∅. We
thus obtain each Mi(x) by the following formula:

Mi(x) =
⋃

y∈children(x)

max_weight (MR(y), {(x, y)} ∪Mi−1(y))

where children(x) are the children of x in F, and max_weight(A, B) returns the set
of arcs having greater weight between A and B (breaking ties arbitrarily).

Finally, we give a brief remark on the complexity. This is important since a trivial
implementation would take quadratic time and space to represent each set Mi(), making
this approach unfeasible on graphs with millions of nodes. However, we can implement
it in O(nR) time and space, where n is the number of nodes in F, as follows. We can first
run the above dynamic programming algorithm, but associate with each Mi(y) just its
weight. Furthermore, we keep track for each Mi(x) of which was the choice performed
on each child y of x (i.e., whether we used (x, y) or not). Computing the weights of
Mi(x) this way takes just O(1) time for each child, costing us in total O(nR) time as F
has O(n) arcs. With this information, we can reconstruct exactly which arcs are used in
the optimal solution MR(r) in a top-down manner by looking at the information about
its children we previously computed.

7.3 Experimental results

In order to evaluate the efficiency of Zuckerli, we first study the effects of various
choices of parameters on compressed size. We also evaluate the effectiveness of the
approximation algorithm for reference selection.

We then compare the compression ratio of Zuckerli with respect to existing state-
of-the-art compression systems for large graphs, either with novel experiments (Web-
Graph [22], Graph Compression by BFS [5], k2-trees [25], LM [53], Backlinks [34]) or
by referring to the experiments in the relevant papers (LogGraph [13] and 2D-Block
Trees [24]). We remark that the proposed scheme does not change the order of nodes
before compression, and as such a comparison with works that propose algorithms

88



7.3. Experimental results

name nodes edges

cnr-2000 325 557 3 216 152
in-2004 1 382 908 16 917 053
eu-2005 862 664 19 235 140
hw-2009 1 139 905 113 891 327
bn-jung 784 262 267 844 668
uk-2002 18 520 486 298 113 762
tw-2010 41 652 230 1 468 365 182
pp-miner 8 254 694 1 847 117 370
sk-2005 50 636 154 1 949 412 601
uk-2007-02 110 123 614 3 944 932 566
eu-2015 1 070 557 254 91 792 261 600

Table 7.1: Graphs used during experiments, with node and edge counts. All graphs
are web graphs, except hw-2009 (hollywood-2009) and tw-2010 (twitter-2010),
which are social networks, bn-jung, which is a brain network, and pp-miner, which
is a protein interaction network.

to find a better node permutation (such as [40]) is out of scope of this experimental
comparison, although it is an interesting direction for future work.

To evaluate the CPU and memory usage of Zuckerli, we compare its decompression
time and memory usage with the corresponding metrics for WebGraph. Moreover, we
compare the running time of a depth-first search and a breadth-first search on Zuckerli-
compressed graphs, on WebGraph-compressed graphs and on uncompressed graphs.

Finally, to evaluate the parallelism of access, we compute the speedup achieved by
Zuckerli on an edge-summing problem when running on 2, 4, 8, 16, 32 and 64 cores.

For all experiments where list decompression is required, R is set to 3 (similarly to
the compressed WebGraph files that used for comparisons), the chunk size C is set to 32,
and the minimum run of 0s to use RLE L′ is set to 3.

The code to run the experiments was written in C++ and compiled with clang++,
version 10; it is available at https://github.com/google/zuckerli.

The experiments were ran on a 32-core AMD 3970X CPU (with SMT enabled) with
256GB of RAM.

Timing information was obtained by using the chrono utilities in the C++ standard
library, or equivalent utilities in Java. Memory usage was measured by the time

command available on Linux systems.

89

https://github.com/google/zuckerli


7. GRAPH COMPRESSION IN PRACTICE

Size (bits per edge)

k 3 4 4 4 5 5
i 1 1 2 2 2 2
j 0 0 0 1 0 1

cnr-2000-hc 1.86 1.87 1.88 1.89 1.90 1.91
cnr-2000 2.23 2.24 2.25 2.29 2.26 2.31

in-2004-hc 1.32 1.33 1.33 1.33 1.33 1.34
in-2004 1.69 1.69 1.71 1.77 1.72 1.79

eu-2005-hc 2.49 2.49 2.47 2.47 2.47 2.47
eu-2005 2.88 2.89 2.88 2.92 2.88 2.93

uk-2002-hc 1.38 1.38 1.37 1.37 1.38 1.37
uk-2002 1.75 1.76 1.78 1.87 1.79 1.89

tw-2010-hc 11.99 12.00 11.99 11.99 12.00 12.00
tw-2010 12.12 12.13 12.12 12.58 12.26 12.62

uk-2007-02-hc 0.92 0.92 0.92 0.91 0.92 0.93
uk-2007-02 1.20 1.20 1.22 1.30 1.23 1.31

Table 7.2: Effects of changing hybrid integer encoding parameters.

7.3.1 Datasets

To run the comparisons, we use graphs from the WebGraph corpus [22, 20, 19], which
are available at http://law.di.unimi.it/datasets.php. The datasets we use
include both social networks and web graphs, with a number of edges varying from a
few millions to 91 billions and a number of nodes varying from a few hundred thousands
to 1 billion. More details about the graphs can be found in Table 7.1. When reporting
results, graphs with a -hc suffix represent the full decompression versions, while other
graphs represent the compressed versions also supporting list decompression.

We also compare Zuckerli with other compression schemes on networks outside
the core focus of Zuckerli itself, namely, a protein interaction network (pp-miner,
from [105]) and a brain network (bn-jung, from [92]).

7.3.2 Parameter Choice

We first investigate the effect of the parameters controlling the integer encoding scheme,
trying different combinations of the number of bits that are included in the entropy-
coded part and the number of integers that are entropy coded as-is. The results are

90

http://law.di.unimi.it/datasets.php


7.3. Experimental results

shown in Table 7.2. They show that using more fine-grained integer representations, i.e.
entropy-coding more bits or having more direct-coded integers, does not give significant
improvements or even worsens the compression ratio.

name
Size (bits per edge)

W = 16 W = 32 W = 64

cnr-2000-hc 1.95 1.87 1.82
cnr-2000 2.31 2.24 2.20

in-2004-hc 1.34 1.33 1.31
in-2004 1.71 1.69 1.68

eu-2005-hc 2.60 2.49 2.43
eu-2005 2.99 2.89 2.83

uk-2002-hc 1.42 1.38 1.35
uk-2002 1.79 1.76 1.73

tw-2010-hc 12.05 12.00 11.95
tw-2010 12.18 12.13 12.09

uk-2007-02-hc 0.95 0.92 0.90
uk-2007-02 1.23 1.20 1.18

Table 7.3: Effects of changing window size.

Next, we compare the effect of changing the window size W, choosing between
values of 16, 32, and 64. The results are reported in Table 7.3. They show that increasing
window size gives significant, although diminishing, savings on compressed size.

Finally, we compare the effect of changing the number of iterations through which
reference lists are chosen (see Subsection 7.2.2), varying between 1 (corresponding to
only using the simple fixed model) to 3. The results are shown in Table 7.4. They show
that using a non-fixed model provides significant savings compared to the fixed one. On
the other hand, further refinement of this model does not improve the compressed size,
and is thus not worth the extra encoding effort.

As a consequence of these results, we perform further experiments using k = 4, i = 1,
j = 0, W = 32, and 2 rounds of reference selection. We remark that W = 64 would have
achieved better compression, but the WebGraph dataset was compressed using W = 32.
We therefore pick this value for ease of comparison.

91



7. GRAPH COMPRESSION IN PRACTICE

name
Size (bits per edge)

1 iter. 2 iter. 3 iter.

cnr-2000-hc 1.87 1.84 1.84
cnr-2000 2.24 2.19 2.19

in-2004-hc 1.33 1.31 1.31
in-2004 1.69 1.65 1.65

eu-2005-hc 2.49 2.46 2.46
eu-2005 2.89 2.83 2.83

uk-2002-hc 1.38 1.36 1.36
uk-2002 1.76 1.72 1.72

tw-2010-hc 12.00 11.97 11.97
tw-2010 12.13 12.12 12.12

uk-2007-02-hc 0.92 0.91 0.91
uk-2007-02 1.20 1.18 1.18

Table 7.4: Effects of changing number of iterations for reference list selection.

name
bits/edge

greedy approx

cnr-2000 2.49 2.24
in-2004 1.82 1.69
eu-2005 3.18 2.89
uk-2002 1.95 1.76
tw-2010 12.29 12.13
uk-2007-02 1.36 1.20

Table 7.5: Comparison of the compressed size achieved by using the greedy algorithm
used by WebGraph for reference selection and the size achieved by our approximation
algorithm described in Subsection 7.2.2.

7.3.3 Effect of Approximation Algorithm and Context Modeling

We evaluate the gain from using the improved algorithm for reference selection (in
Subsection 7.2.2), as opposed to the simple greedy algorithm used by WebGraph. The
results are shown in Table 7.5. We remark that, as the reference selection is employed
only when list decompression is supported, the table does not report results for the -hc
version of the graphs.

We also report the effects of disabling Zuckerli’s context model, by using the same

92



7.3. Experimental results

name
bits/edge

no ctx model default

cnr-2000-hc 2.17 1.84
cnr-2000 2.47 2.19

in-2004-hc 1.55 1.31
in-2004 1.86 1.65

eu-2005-hc 2.84 2.46
eu-2005 3.14 2.83

uk-2002-hc 1.58 1.36
uk-2002 1.92 1.72

tw-2010-hc 13.21 11.97
tw-2010 13.27 12.12

uk-2007-02-hc 1.04 0.91
uk-2007-02 1.31 1.20

Table 7.6: Effects of disabling Zuckerli’s context model.

probability distribution for all the entropy coded symbols. The results are shown in
Table 7.6.

The results show that the gains from the approximation algorithm are significant,
reaching up to 12% for web graphs, and also providing some benefits for social networks
like tw-2010. The gains from the context model are similar.

We remark that this improvement is significant in a lossless compression context. In
comparison, one of the most well-known advances in general purpose compression, the
Burrows-Wheeler Transform [30], achieved roughly a 16% size reduction compared to
previous approaches.

7.3.4 Compression Results and Resource Usage

For the chosen set of parameters, we report the compression speed and the resulting
compression ratio on various graphs. We also compare the resulting compressed size
with the ones achieved by WebGraph and by Graph Compression By BFS (GCBFS),
k2-trees, List Merging (LM) and Backlinks. To perform this comparison, we use the
files available from the WebGraph corpus itself, without any recompression, and the
implementation of GCBFS that is available at https://github.com/drovandi/
GraphCompressionByBFS, with parameters l = 10000 for full decompression and
l = 8 for list decompression. We include two publicly available implementation for k2-

93

https://github.com/drovandi/GraphCompressionByBFS
https://github.com/drovandi/GraphCompressionByBFS


7. GRAPH COMPRESSION IN PRACTICE
nam

e
com

pression
bits/edge

speed

(10
6e/

s)
Z

uckerli
W

ebG
raph

G
C

BFS
k

2-trees
LM

Backlinks

c
n
r
-
2
0
0
0
-
h
c

1.01
1.84

2.45
133%

1.88
102%

-
2.28

123%
-

c
n
r
-
2
0
0
0

0.89
2.19

3.12
142%

2.72
124%

3.12
142%

3.46
158%

10.51
480%

i
n
-
2
0
0
4
-
h
c

1.19
1.31

1.76
134%

1.42
108%

-
1.74

132%
-

i
n
-
2
0
0
4

1.03
1.65

2.15
130%

2.16
131%

2.25
136%

2.60
157%

9.62
583%

e
u
-
2
0
0
5
-
h
c

1.03
2.46

3.16
128%

2.81
114%

-
2.34

95%
-

e
u
-
2
0
0
5

0.97
2.83

3.72
131%

3.50
124%

3.23
114%

3.48
123%

10.26
362%

b
n
-
j
u
n
g
-
h
c

1.04
2.07

2.57
124%

4.97
240%

-
2.86

138%
-

b
n
-
j
u
n
g

1.01
2.41

2.96
123%

4.78
200%

-
3.21

133%
3.52

146%

u
k
-
2
0
0
2
-
h
c

1.15
1.36

1.80
132%

1.71
126%

-
1.78

130%
-

u
k
-
2
0
0
2

1.03
1.72

2.24
130%

2.43
141%

2.26
131%

2.66
154%

10.54
613%

h
w
-
2
0
0
9
-
h
c

0.69
4.26

4.80
113%

7.29
171%

-
5.11

120%
-

h
w
-
2
0
0
9

0.60
4.47

4.94
111%

7.51
168%

6.76
151%

5.83
124%

4.76
106%

t
w
-
2
0
1
0
-
h
c

0.50
11.97

13.89
116%

15.34
128%

-
13.75

115%
-

t
w
-
2
0
1
0

0.42
12.12

14.46
119%

15.21
125%

19.53
161%

15.70
129%

15.43
127%

p
p
-
m
i
n
e
r
-
h
c

1.02
3.48

3.80
109%

4.60
132%

-
4.34

124%
-

p
p
-
m
i
n
e
r

0.99
3.81

4.37
114%

4.60
120%

-
5.19

136%
3.73

98%

u
k
-
2
0
0
7
-
0
2
-
h
c

1.63
0.91

1.18
130%

1.28
141%

-
1.06

116%
-

u
k
-
2
0
0
7
-
0
2

1.53
1.18

1.56
132%

1.80
152%

2.58
219%

1.62
137%

8.03
681%

e
u
-
2
0
1
5
-
h
c

1.46
0.74

0.89
120%

-
-

-
-

e
u
-
2
0
1
5

1.34
0.92

1.20
130%

-
-

-
-

Table
7.7:C

om
parison

ofcom
pressed

size
betw

een
Z

uckerli,W
ebG

raph,G
raph

C
om

pression
w

ith
BFS,k

2-trees,Backlinks
and

LM
(up

to
LM

-16
for

random
access,up

to
LM

-64
for

high
com

pression).W
e

reportcom
pression

speed
and

bits
per

edge
for

Z
uckerli,and

bits
per

edge
and

relative
size

w
ith

respectto
Z

uckerlifor
the

other
m

ethods.The
G

C
BFS

encoder
crashed

w
hen

com
p

ressing
e
u
-
2
0
1
5.O

ther
m

ethod
s

w
ere

notru
n

on
e
u
-
2
0
1
5

becau
se

the
available

im
p

lem
entations

cou
ld

n’t
handle

graphs
ofthis

size
w

ithin
the

available
R

A
M

.The
k

2-tree
com

pression
code

crashed
on

p
p
-
m
i
n
e
r

and
b
n
-
j
u
n
g.

94



7.3. Experimental results

trees: the one at https://lbd.udc.es/research/k2tree/ and the one available
in the SDSL-lite library [51], modified to not consider the cost of the rank data structures,
which are only required for navigation and are not accounted for in the other algorithms;
we report the best result of the two implementations, for all graphs where they both ran to
completion. In particular, the implementation at https://lbd.udc.es/research/
k2tree/ did not successfully compress tw-2010 and uk-2007-02. Experiments have
been run with k = 2, 3, 4 and the best result was reported. For the LM algorithm the
implementation provided by the authors was used; a chunk size of 16 was chosen
for list decompression (which provides access times comparable to WebGraph), while
for full decompression a chunk size of 64 was chosen (the same setting used in the
original paper). The Backlinks algorithm uses the implementation available at https:
//github.com/snuke/backlinks-compression.

The results are shown in Table 7.7. They show that Zuckerli typically achieves 20%
to 30% size savings when compared to WebGraph on web graphs and brain networks,
and 10% to 15% size savings on social and protein interaction networks. In compari-
son, GCBFS achieves worse compression ratios than WebGraph in the larger datasets
(hw-2009, tw-2010, uk-2007), and worse compression ratios than Zuckerli in all
datasets (by up to 42%). WebGraph achieves significantly better compression than LM
in the “list decompression” cases, and similar compression in the “full decompression”
cases. Backlinks achieves significantly worse compression than WebGraph in all cases
but three. Moreover, the decompression speed reported in the introductory paper for
most algorithms is comparable with the one of WebGraph. Thus, we decide to run
the remaining experiments comparing only with WebGraph, given that decompression
speed is not the focus of Zuckerli as long as it is acceptable for general use.

We also compare Zuckerli’s compression ratios to those achieved by k2-trees and
2D-Block Trees [24]. While those data structures allow for single edge queries and
reverse neighbour listing, Zuckerli only allows, in its least dense configurations, for
individual forward adjacency list queries. Thus, the methods are not directly comparable.
However, according to the results reported in [24] and in Table 7.7, both representations
are significantly less dense than Zuckerli, with the best of the two producing compressed
representations bigger by 30% or more in most cases. Further, according to the reported
speed, the faster of the methods is able to process roughly 200 thousand edges per
second, due to the intense use of sophisticated succinct data structures causing many
cache misses, which is orders of magnitude slower than Zuckerli.

Finally, while we did not perform a direct comparison with LogGraph [13], we remark
that while it offers improved performance for list access compared to WebGraph, it does

95

https://lbd.udc.es/research/k2tree/
https://lbd.udc.es/research/k2tree/
https://lbd.udc.es/research/k2tree/
https://github.com/snuke/backlinks-compression
https://github.com/snuke/backlinks-compression


7. GRAPH COMPRESSION IN PRACTICE

name degree reference block
residuals

total
first oth.

cnr-2000-hc 0.24 0.23 0.36 0.34 0.65 1.84
cnr-2000 0.27 0.24 0.33 0.41 0.92 2.19

in-2004-hc 0.20 0.17 0.26 0.24 0.44 1.31
in-2004 0.22 0.19 0.24 0.32 0.68 1.65

eu-2005-hc 0.15 0.14 0.40 0.32 1.45 2.46
eu-2005 0.16 0.14 0.36 0.38 1.79 2.83

uk-2002-hc 0.19 0.16 0.23 0.24 0.54 1.36
uk-2002 0.20 0.16 0.21 0.32 0.80 1.72

hw-2009-hc 0.05 0.02 0.34 0.09 3.73 4.26
hw-2009 0.05 0.02 0.33 0.10 3.95 4.47

tw-2010-hc 0.15 0.09 0.30 0.61 10.21 11.97
tw-2010 0.15 0.09 0.27 0.62 10.29 12.12

uk-2007-02-hc 0.09 0.07 0.14 0.14 0.42 0.91
uk-2007-02 0.09 0.07 0.12 0.19 0.60 1.18

Table 7.8: Breakdown of bit allocation, reported as bits per edge.

not achieve better compression ratios, as reported in [13]. [13] also shows experimental
evidence of WebGraph exhibiting higher compression ratio than [13, 1, 17].

We also explore how the bit budget of Zuckerli is spent across the various parts of the
graph that get encoded: degrees, references, blocks, and residuals, with the first residual
being considered separately. The results are shown in Table 7.8. They show a remarkable
difference between web graphs and social networks. Indeed, in social networks, almost
all the bits are spent encoding residuals, while in web graphs the fraction of bits used
for residuals is not as significant. This can be explained by the greater effectiveness
of the block copying mechanism on web graphs, due to greater similarity in outgoing
adjacency lists.

7.3.5 Performance Evaluation

We evaluate the performance characteristics of Zuckerli by comparing its running time
and memory usage for running depth-first and breadth-first traversals with WebGraph
(only for the variants that allow access to single lists), as well as with uncompressed
graphs, as a baseline. Those algorithms were chosen to obtain real-world access patterns
for adjacency lists, and every list was decompressed exactly once. The running time and

96



7.3. Experimental results

1 4 8 16 24 32 40 48 56 64
1
4

8

16

24

32

40

48

56

64

Cores

Sp
ee

du
p

Figure 7.2: Speedup obtained by Zuckerli when computing the sum of the endpoints
of all the edges using a variable number of cores on uk-2007-02. The dashed line
represents the ideal speedup.

97



7. GRAPH COMPRESSION IN PRACTICE

nam
e

uncom
pressed

Z
uckerli

W
ebG

raph

tim
e

µs/
adjlist

m
em

ory
tim

e
µs/

adjlist
m

em
ory

tim
e

µs/
adjlist

m
em

ory

c
n
r
-
2
0
0
0

D
FS

15
0.04

17
300

0.92
10

395
1.21

186
c
n
r
-
2
0
0
0

BFS
13

0.04
17

302
0.92

10
389

1.19
181

i
n
-
2
0
0
4

D
FS

72
0.05

79
1319

0.95
32

1300
0.94

262
i
n
-
2
0
0
4

BFS
68

0.05
79

1326
0.95

32
1392

1.00
408

e
u
-
2
0
0
5

D
FS

89
0.10

84
1278

1.48
30

1542
1.78

293
e
u
-
2
0
0
5

BFS
80

0.09
84

1285
1.49

30
1764

2.04
381

u
k
-
2
0
0
2

D
FS

2791
0.15

1315
20

808
1.12

422
17

974
0.97

1778
u
k
-
2
0
0
2

BFS
1556

0.08
1314

21
256

1.14
431

19
865

1.07
1956

h
w
-
2
0
0
9

D
FS

328
0.28

458
3922

3.44
147

6499
5.70

451
h
w
-
2
0
0
9

BFS
320

0.28
458

3871
3.39

148
6366

5.58
429

t
w
-
2
0
1
0

D
FS

11
403

0.27
6069

115
120

2.76
5094

196
588

4.71
13

377
t
w
-
2
0
1
0

BFS
11

400
0.27

6156
114

356
2.74

5154
192

121
4.61

13
587

u
k
-
2
0
0
7
-
0
2

D
FS

13
154

0.11
16

286
154

338
1.40

2883
177

945
1.61

2248
u
k
-
2
0
0
7
-
0
2

BFS
13

155
0.11

16
287

156
467

1.42
2936

179
206

1.62
2781

Table
7.9:R

u
nning

tim
e

(in
m

illisecond
s)and

m
em

ory
u

sage
(in

M
B

)for
ru

nning
bread

th-fi
rstand

d
ep

th-fi
rstsearch

on
both

the
uncom

pressed
and

the
com

pressed
representations

(both
w

ith
Z

uckerliand
W

ebG
raph)ofvarious

graphs.W
e

also
reportthe

average
tim

e
(in

µs)to
access

each
adjacency

list.

98



7.3. Experimental results

name
Zuckerli WebGraph

time memory time memory

cnr-2000-hc 0.03 5 0.36 107
cnr-2000 0.03 4 0.36 109

in-2004-hc 0.14 7 0.66 179
in-2004 0.14 6 0.63 182

eu-2005-hc 0.18 10 0.67 179
eu-2005 0.18 9 0.71 176

uk-2002-hc 2.20 54 4.93 763
uk-2002 2.16 65 5.08 829

hw-2009-hc 1.35 64 2.36 175
hw-2009 1.33 65 2.38 171

tw-2010-hc 28.19 2415 36.53 1308
tw-2010 24.50 2439 35.65 1719

uk-2007-02-hc 21.32 445 46.61 1701
uk-2007-02 20.84 573 49.25 1617

Table 7.10: Running time (in seconds) and memory usage (in MB) for decompressing the
graphs sequentially with Zuckerli and with Webgraph.

the memory usage are reported in Table 7.9. We also compare the time and memory
usage for running a full sequential decompression of the graphs, with results reported
in Table 7.10.

From these comparisons, it emerges that the memory usage for decompression and
random access required by WebGraph and Zuckerli is very different, with both methods
using less memory in some situations. This can be explained by the different language of
the implementation (C++ and Java), as well as the fact that WebGraph uses lazy iteration
on adjacency lists, to avoid decompressing them fully to memory. While this can in
principle be supported by Zuckerli, it was not implemented in this version of the code.

Regarding running time, Zuckerli is often faster than WebGraph. This is due to the
fact that Zuckerli requires less memory bandwidth than WebGraph (as it uses less bits
for compression), and that it is written in highly optimized C++ code.

Finally, to evaluate the scalability of Zuckerli on multiple cores, we wrote a simple
program that computes the sum of all endpoints of all edges of a graph, and we ran it on
uk-2007-02 using 1, 2, 4, 8, 16, 32 and 64 cores. The results are shown in Figure 7.2 and
show Zuckerli’s good scalability; the speedup is likely limited by memory bandwidth.

99



7. GRAPH COMPRESSION IN PRACTICE

7.4 Further improvements on the Zuckerli scheme

We will now show two improvements over the Zuckerli scheme described so far, for
full decompression. We achieve those improvements by using the context modeling
techniques from Section 4.1 and Section 4.2, as well as a new reference selection method.

7.4.1 Tree-based context modeling

We apply the tree building heuristic from Section 4.2, followed by the clustering heuristic
from Section 4.1, to degrees, reference offsets, block counts, block sizes and residuals,
defining C for each of them as follows:

• For degrees, C is a 3-tuple formed by the current node id i, the delta between the
degree of node i− 1 and i− 2, and the degree of node i− 1.

• For reference offsets, C is a 3-tuple formed by the current node id i, the reference
offset of i− 1 and the degree of the current node (because we expect a lower degree
node to be less likely to use a reference).

• For block counts, C is a pair containing the current node and its reference offset.

• For block sizes, C for the j-th block of node i contains i, the reference offset for
node i, j, the number of remaining blocks for the current node, j mod 2 (since
even and odd blocks have different meanings), the size of block j− 1 and the size
of block j− 2.

• For residuals, C for the j-th residual of node i contains i, j, the value with respect
to which the current residual is delta-coded, the number of remaining residuals to
decode, and the length of the previous gap between residuals.

As an example, when encoding the residuals in the adjacency list from Figure 7.1 we
have the following values for C:

• [7, 0, 7, 4, 0] for encoding −4: this is the first residual edge, hence the previous gap
is set to 0, and delta-encoding is done with respect to the current node index.

• [7, 1, 5, 3, 9] for encoding 3: this is the second residual edge, hence the previous gap
might be negative and is thus represented using the bijection of Equation (7.1).

• [7, 2, 9, 2, 3] for encoding the first 0.

• [7, 3, 13, 1, 0] for encoding the second 0.

100



7.4. Further improvements on the Zuckerli scheme

Algorithm 6: Algorithm to get candidates for reference list selections, using a
search buffer of size k.

Function Init():
last← n× k array filled with n;
last_idx ← n-sized array filled with 0;

Function UpdateAfterNode(i):
/* used after finding candidates for i and before i + 1 */
for x ∈ N+(i) do

last[x][last_idx[x]]← i;
last_idx[x]← (p + 1) mod k;

Function GetCandidates(i):
candidates← empty hash-map;
for x ∈ N+(i) do

for v ∈ last[x] do
if v 6= n then

/* missing entries are treated as 0 */
candidates[v]← candidates[v] + 1;

return keys from candidates with the W highest values;

7.4.2 Reference selection algorithm

The new reference selection algorithm differs from the one used in Zuckerli by, instead
conducting an exhaustive search among the previous W nodes to find the one with the
best size reduction, selecting candidate nodes by the following procedure:

• For each edge of node i, increment a counter by 1 for the last k nodes in the graph
that also have that edge.

• Sort all nodes by decreasing order of their counter.

• Select the top W nodes in the resulting order.

Moreover, we also tweak the heuristic for deciding the best candidate, by adding to
the cost a term that is logarithmic in the gap between the reference list and the current
list: this estimates the cost of encoding the reference id itself.

The above procedure can be executed in O(mk) time and using O(n) extra memory:
it is sufficient to keep a buffer of size k for the last k occurrences of a given node; then,
for every node there will be ≤ ∆ik elements to sort; as we only need to know the
top W elements, this can be done using for example the Quickselect algorithm, for a

101



7. GRAPH COMPRESSION IN PRACTICE

name Zuckerli tree tree+ref

cnr-2000-hc 1.89 1.57 1.53
cnr-2000-nat-hc 2.07 1.58 1.47

in-2004-hc 1.33 1.14 1.14
in-2004-nat-hc 1.56 1.22 1.12

bn-jung-hc 2.07 1.97 1.92

uk-2002-hc 1.37 1.26 1.22
uk-2002-nat-hc 1.52 1.31 1.21

tw-2010-hc 12.10 11.42 11.45
tw-2010-nat-hc 13.63 12.67 12.61

pp-miner-hc 3.48 3.42 3.55

sk-2005-hc 1.26 1.06 0.99
sk-2005-nat-hc 1.97 1.49 1.10

Table 7.11: Effects of tree-based context modeling and of the new reference selection
algorithm on Zuckerli compression.

running time of O(∆ik). A more detailed description of the algorithm may be found
in Algorithm 6.

This heuristic is intended to find in the graph adjacency lists that share a large
number of edges with the current list: indeed, if we consider the case of k = ∞, the
counters computed by the heuristic correspond exactly to the size of the intersection
between the current and candidate adjacency lists. In this sense, the algorithm shares
some similarities with the shingle ordering heuristic [34], which tries to sort a network
so that nodes with a high Jaccard similarity are close together.

However, the version of the algorithm with unbounded k has O(mn) time complexity
and O(n2) space complexity , which is not feasible for large graphs. Instead, we keep
track of a sliding window of the last k adjacency lists in which each node occurs, similarly
to how LZ77 matching is often done with a sliding window,

7.4.3 Experimental results

Table 7.11 reports the results of applying these two techniques to some of the graph
used in the experimental evaluation of Zuckerli. We remark that tree-based context
modeling has a very significant cost both for encoding and decoding time (about 10x
and 3x respectively), and thus we conducted a smaller experimental evaluation, without

102



7.4. Further improvements on the Zuckerli scheme

considering the list decompression case as access times would be impractical. We also
studied the impact of these compression improvements over the graphs in natural order,
i.e. without the usage of the LLP node reordering scheme [20], that gives significant
density improvements to both WebGraph and Zuckerli.

We first discuss the changes on Web Graphs. From the results in Table 7.11, we can
observe that when using the compression scheme using both tree context modeling
and the new reference selection the gap between natural and LLP order is significantly
reduced, in some cases with the natural order even achieving better density.

As an explanation for the improved performance, we observe that the objective of
LLP is to bring closer together nodes with similar adjacency lists, while at the same
time reducing the gap between node IDs in each list. However, with the new reference
selection algorithm it is no longer as important for nodes to be close together; moreover,
tree-based context modeling can use the destination node ID of the previously-decoded
edge, which allows the context model to encode information about the gaps in adjacency
lists.

The results in Table 7.11, we can conclude that tree-based context modeling further
reduces the compressed size by a 8− 15% factor for Web Graphs, and the new reference
selection algorithm gives a further 3− 7%. The improvements are even greater for
graphs in natural order, achieving up to 80% size reduction in some cases and often
producing the same size, or smaller, as when using LLP.

These conclusions also extend to brain networks such as bn-jung.
Finally, we observe that these techniques also benefit social networks such as

tw-2010 and protein interaction networks such as pp-miner, although the improve-
ment is not as significant.

However, both graphs show some degradation when switching to the new reference
algorithm. The worse performance in these cases can likely be explained by the different
structure of the networks; it is interesting to note that, as seen in Table 7.7, these are also
the graphs where Backlinks has the best results compared to Zuckerli.

103





C
H

A
P

T
E

R

8
CONCLUSIONS

I N THIS THESIS we presented a theoretical and practical study of compression of
large graphs, as well as novel techniques for encoding integers and for managing
large context spaces in entropy coding.

From the theoretical perspective, we studied six different graph models, deriving
lower bounds on their entropy and providing polynomial-time compression algorithms
that are able to match (or almost match) these lower bounds up to lower-order terms,
thus proving their optimality. In particular, we generalized a result obtained in [72] on
the entropy of graphs from the Preferential Attachment model, and proved that they
can be compressed in an asymptotically optimal way in polynomial time.

From the practical perspective, we introduced a novel compression scheme for large
graphs that achieves significant space savings for compression of web graphs, brain
networks, social networks and protein interaction networks compared to state-of-the-
art schemes, such as the WebGraph framework, while retaining high performance for
decoding operations. Experimental results show that the savings can be quantified
as being about 25% on web graphs and brain networks, 12% on social networks and
protein interaction networks, both for the full and the list decompression use cases. This
improvement was achieved in part thanks to the novel integer encoding scheme that
was introduced and analyzed in this thesis.

We introduced novel techniques for managing a large context space when doing

105



8. CONCLUSIONS

higher order entropy coding, and applied them to the proposed graph compression
scheme. We also proposed a new reference-finding algorithm for graphs that is less
reliant on the specific ordering of the nodes in the graph. The combination of these two
techniques improves the compression density for web graphs and brain networks in the
full decompression case by a further 12% to 27%, and for social networks and protein
interaction networks by about 5%.

The proposed scheme can achieve significantly improved compression density on
graphs in natural order, i.e. graphs that have not been permuted to fit a specific compres-
sion scheme. These improvements are often significant enough to result in graphs in
natural order that have the same compressed size as graphs permuted using LLP [20].

8.1 Future work

An interesting question that comes natural when observing the compression density
achieved by the tree-based context modeling techniques is whether those techniques can
be applied to other compression tasks with similar benefits.

We know from JPEG XL that tree-based context modeling can achieve state-of-the-
art compression ratios for images. A text compressor using similar techniques could
potentially achieve significant improvements over existing text compressors.

Further improvements in compression ratio may be achieved by employing different
strategies for tree constructions. Techniques from machine learning, such as genetic
algorithms and gradient-based methods, could allow construction of better context trees
while still allowing manageable complexity.

Another direction of improvement for tree-based context modelling is studying how
to enhance its decompression speed; for this, one possibility would be for example to
use a compiler to produce optimized executable code that represents a specific tree, as
well as combining multiple levels of the decision tree together to make better use of the
superscalar architectures of modern CPUs.

Regarding graph compression specifically, an interesting future direction of study is
in the domain of graph permutations and, more specifically, in investigating whether
a heuristic for graph reordering that is based on the same ideas as the novel reference
selection heuristic proposed in Section 7.4 would provide better compression compared
to other state-of-the-art permutation techniques.

Finally, it would be interesting to study how to extend the Zuckerli model to labeled
and/or weighted graphs, as those graphs tend to be more used in real-world applications
and require inherently more memory.

106



BIBLIOGRAPHY

[1] Micah Adler and Michael Mitzenmacher. Towards compressing web graphs. In
Proceedings DCC 2001. Data Compression Conference, pages 203–212. IEEE, 2001.

[2] Jyrki Alakuijala, Ruud van Asseldonk, Sami Boukortt, Martin Bruse, Iulia-Maria
Coms, a, Moritz Firsching, Thomas Fischbacher, Evgenii Kliuchnikov, Sebastian
Gomez, Robert Obryk, Krzysztof Potempa, Alexander Rhatushnyak, Jon Sneyers,
Zoltan Szabadka, Lode Vandervenne, Luca Versari, and Jan Wassenberg. JPEG XL
next-generation image compression architecture and coding tools. In Andrew G.
Tescher and Touradj Ebrahimi, editors, Applications of Digital Image Processing XLII,
volume 11137, pages 112 – 124. International Society for Optics and Photonics,
SPIE, 2019.

[3] Jyrki Alakuijala and Lode Vandevenne. Data compression using zopfli. Google,
Tech. Rep., 2013.

[4] Vo Ngoc Anh and Alistair Moffat. Local modeling for webgraph compression. In
2010 Data Compression Conference, pages 519–519. IEEE, 2010.

[5] Alberto Apostolico and Guido Drovandi. Graph compression by BFS. Algorithms,
2(3):1031–1044, 2009.

[6] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful
seeding. Technical report, Stanford, 2006.

[7] Yasuhito Asano, Tsuyoshi Ito, Hiroshi Imai, Masashi Toyoda, and Masaru Kitsure-
gawa. Compact encoding of the web graph exploiting various power laws. In
International Conference on Web-Age Information Management, pages 37–46. Springer,
2003.

107



BIBLIOGRAPHY

[8] Yasuhito Asano, Yuya Miyawaki, and Takao Nishizeki. Efficient compression of
web graphs. In International Computing and Combinatorics Conference, pages 1–11.
Springer, 2008.

[9] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 684–697, 2016.

[10] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[11] David Benoit, Erik D Demaine, J Ian Munro, Rajeev Raman, Venkatesh Raman, and
S Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292,
2005.

[12] Maciej Besta and Torsten Hoefler. Survey and taxonomy of lossless graph com-
pression and space-efficient graph representations, 2018.

[13] Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold,
and Torsten Hoefler. Log(graph): a near-optimal high-performance graph repre-
sentation. In Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques, pages 1–13, 2018.

[14] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar, and Suresh
Venkatasubramanian. The connectivity server: Fast access to linkage information
on the web. Computer networks and ISDN Systems, 30(1-7):469–477, 1998.

[15] Alankrita Bhatt, Chi Wang, Lele Wang, and Ziao Wang. Universal graph compres-
sion: Stochastic block models. arXiv preprint arXiv:2006.02643, 2020.

[16] Philip Bille, Inge Li Gørtz, and Søren Vind. Compressed data structures for
range searching. In International Conference on Language and Automata Theory and
Applications, pages 577–586. Springer, 2015.

[17] Daniel K Blandford, Guy E Blelloch, and Ian A Kash. Compact representations of
separable graphs. In Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 679–688. Society for Industrial and Applied Mathematics,
2003.

[18] Guy E Blelloch and Arash Farzan. Succinct representations of separable graphs.
In Annual Symposium on Combinatorial Pattern Matching, pages 138–150. Springer,
2010.

108



Bibliography

[19] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. BUbiNG:
Massive crawling for the masses. In Proceedings of the Companion Publication of
the 23rd International Conference on World Wide Web, pages 227–228. International
World Wide Web Conferences Steering Committee, 2014.

[20] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for compressing social
networks. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th interna-
tional conference on World Wide Web, pages 587–596. ACM Press, 2011.

[21] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Permuting web and social
graphs. Internet Mathematics, 6(3):257–283, 2009.

[22] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: compression
techniques. In Proceedings of the 13th international conference on World Wide Web,
pages 595–602, 2004.

[23] Paolo Boldi and Sebastiano Vigna. The WebGraph framework II: Codes for the
world-wide web. In Data Compression Conference, 2004. Proceedings. DCC 2004,
page 528. IEEE, 2004.

[24] Nieves R Brisaboa, Travis Gagie, Adrián Gómez-Brandón, and Gonzalo Navarro.
Two-dimensional block trees. In 2018 Data Compression Conference, pages 227–236.
IEEE, 2018.

[25] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for compact
web graph representation. In International Symposium on String Processing and
Information Retrieval, pages 18–30. Springer, 2009.

[26] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. Compact representation
of web graphs with extended functionality. Information Systems, 39:152–174, 2014.

[27] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in
the web. Computer networks, 33(1-6):309–320, 2000.

[28] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to
web graph compression with communities. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages 95–106, 2008.

109



BIBLIOGRAPHY

[29] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature reviews neuroscience, 10(3):186–198,
2009.

[30] Michael Burrows and David J Wheeler. A block-sorting lossless data compression
algorithm. Systems Research Center, 1994.

[31] Adenauer G. Casali, Olivia Gosseries, Mario Rosanova, Mélanie Boly, Simone
Sarasso, Karina R. Casali, Silvia Casarotto, Marie-Aurélie Bruno, Steven Laureys,
Giulio Tononi, and Marcello Massimini. A theoretically based index of con-
sciousness independent of sensory processing and behavior. Science Translational
Medicine, 5(198):198ra105–198ra105, 2013.

[32] Arthur Cayley. A theorem on trees. Quart. J. Math., 23:376–378, 1889.

[33] Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi,
and Mukesh Mohania. Decision trees for entity identification: Approximation
algorithms and hardness results. In Proceedings of the twenty-sixth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 53–62, 2007.

[34] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-
dro Panconesi, and Prabhakar Raghavan. On compressing social networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 219–228, 2009.

[35] Francisco Claude and Susana Ladra. Practical representations for web and social
graphs. In Proceedings of the 20th ACM international conference on Information and
knowledge management, pages 1185–1190, 2011.

[36] Francisco Claude and Gonzalo Navarro. A fast and compact web graph repre-
sentation. In International Symposium on String Processing and Information Retrieval,
pages 118–129. Springer, 2007.

[37] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi, Andrea
Marino, and Luca Versari. D2K: Scalable community detection in massive net-
works via small-diameter k-plexes. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 1272–1281,
2018.

110



Bibliography

[38] Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari.
Discovering k-trusses in large-scale networks. In 2018 IEEE High Performance
extreme Computing Conference (HPEC), pages 1–6. IEEE, 2018.

[39] Colin Cooper and Alan Frieze. The cover time of the preferential attachment
graph. Journal of Combinatorial Theory, Series B, 97(2):269–290, 2007.

[40] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. Compressing graphs and indexes with recursive
graph bisection. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1535–1544, 2016.

[41] Jarek Duda. Asymmetric numeral systems. arXiv preprint arXiv:0902.0271, 2009.

[42] Peter Elias. Universal codeword sets and representations of the integers. IEEE
transactions on information theory, 21(2):194–203, 1975.

[43] P Erdös and A Rényi. On random graphs I. Publ. math. debrecen, 6(290-297):18,
1959.

[44] Paul Erdős and András Hajnal. On chromatic number of graphs and set-systems.
Acta Mathematica Academiae Scientiarum Hungarica, 17(1-2):61–99, 1966.

[45] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, pages 128–140, 1741.

[46] Reza Fathi, Anisur Rahaman Molla, and Gopal Pandurangan. Efficient distributed
community detection in the stochastic block model. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pages 409–419. IEEE, 2019.

[47] Moritz Firsching, Luca Versari, Sami Boukortt, and Jyrki Alakuijala. Compres-
sion. https://almanac.httparchive.org/en/2020/compression, 2020
(accessed December 14, 2020).

[48] Johannes Fischer and Daniel Peters. Glouds: Representing tree-like graphs. Journal
of Discrete Algorithms, 36:39–49, 2016.

[49] Harold N Gabow and Herbert H Westermann. Forests, frames, and games: algo-
rithms for matroid sums and applications. Algorithmica, 7(1-6):465, 1992.

[50] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–
1144, 1959.

111

https://almanac.httparchive.org/en/2020/compression


BIBLIOGRAPHY

[51] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to prac-
tice: Plug and play with succinct data structures. In 13th International Symposium
on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[52] Szymon Grabowski and Wojciech Bieniecki. Tight and simple web graph compres-
sion. arXiv preprint arXiv:1006.0809, 2010.

[53] Szymon Grabowski and Wojciech Bieniecki. Merging adjacency lists for efficient
web graph compression. In Man-Machine Interactions 2, pages 385–392. Springer,
2011.

[54] Jean-Loup Guillaume, Matthieu Latapy, and Laurent Viennot. Efficient and simple
encodings for the web graph. In International Conference on Web-Age Information
Management, pages 328–337. Springer, 2002.

[55] Michael Hardy. Bounds on sum of inverses of first n square roots. https://
math.stackexchange.com/questions/2416918, 2017 (accessed December
14, 2020).

[56] Cecilia Hernández and Gonzalo Navarro. Compressed representation of web
and social networks via dense subgraphs. In International Symposium on String
Processing and Information Retrieval, pages 264–276. Springer, 2012.

[57] Cecilia Hernández and Gonzalo Navarro. Compressed representations for web
and social graphs. Knowledge and information systems, 40(2):279–313, 2014.

[58] David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[59] Guy Jacobson. Space-efficient static trees and graphs. In 30th annual symposium on
foundations of computer science, pages 549–554. IEEE Computer Society, 1989.

[60] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct represen-
tation of ordered trees. In SODA, volume 7, pages 575–584, 2007.

[61] Haim Kaplan, Shir Landau, and Elad Verbin. A simpler analysis of Burrows–
Wheeler-based compression. Theoretical Computer Science, 387(3):220–235, 2007.

[62] Chinmay Karande, Kumar Chellapilla, and Reid Andersen. Speeding up algo-
rithms on compressed web graphs. Internet Mathematics, 6(3):373–398, 2009.

112

https://math.stackexchange.com/questions/2416918
https://math.stackexchange.com/questions/2416918


Bibliography

[63] Hamid Khalili, Amir Yahyavi, and Farhad Oroumchian. Web-graph precom-
pression for similarity based algorithms. In Proceedings of the Third International
Conference on Modeling, Simulation and Applied Optimization, 2009.

[64] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,
1956.

[65] Soon-kak Kwon, A Tamhankar, and KR Rao. Overview of H.264/MPEG-4 part 10.
Journal of Visual Communication and Image Representation, 17(2):186–216, 2006.

[66] Eduardo S Laber and Loana Tito Nogueira. On the hardness of the minimum
height decision tree problem. Discrete Applied Mathematics, 144(1-2):209–212, 2004.

[67] Lawrence L Larmore and Daniel S Hirschberg. A fast algorithm for optimal
length-limited huffman codes. Journal of the ACM (JACM), 37(3):464–473, 1990.

[68] N Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression.
Proceedings of the IEEE, 88(11):1722–1732, 2000.

[69] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[70] Fengying Li, Qi Zhang, Tianlong Gu, and Rongsheng Dong. Optimal represen-
tation for web and social network graphs based on k2-tree. IEEE Access, 7:52945–
52954, 2019.

[71] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization
methods and applications: A survey. ACM Computing Surveys (CSUR), 51(3):1–34,
2018.

[72] Tomasz Łuczak, Abram Magner, and Wojciech Szpankowski. Asymmetry and
structural information in preferential attachment graphs. Random Structures &
Algorithms, 55(3):696–718, 2019.

[73] Matt Mahoney. Rationale for a large text compression benchmark. Retrieved (Aug.
20th, 2006) from: http://cs. fit. edu/mmahoney/compression/rationale. html, 2006.

[74] Sebastian Maneth and Fabian Peternek. Compressing graphs by grammars. In
2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages 109–120.
IEEE, 2016.

113

http://snap.stanford.edu/data


BIBLIOGRAPHY

[75] Hossein Maserrat and Jian Pei. Neighbor query friendly compression of social
networks. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 533–542, 2010.

[76] David W Matula and Leland L Beck. Smallest-last ordering and clustering and
graph coloring algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.

[77] Alistair Moffat, Radford M Neal, and Ian H Witten. Arithmetic coding revisited.
ACM Transactions on Information Systems (TOIS), 16(3):256–294, 1998.

[78] Alistair Moffat and Matthias Petri. Large-alphabet semi-static entropy coding via
asymmetric numeral systems. ACM Transactions on Information Systems (TOIS),
38(4):1–33, 2020.

[79] J Ian Munro and Venkatesh Raman. Succinct representation of balanced parenthe-
ses and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[80] Richard Otter. The number of trees. Annals of Mathematics, pages 583–599, 1948.

[81] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

[82] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[83] Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. Journal of computer and system sciences, 43(3):425–440, 1991.

[84] Richard Clark Pasco. Source coding algorithms for fast data compression. PhD thesis,
Stanford University CA, 1976.

[85] Nicola Prezza. On locating paths in compressed tries. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 744–760. SIAM, 2021.

[86] Heinz Prüfer. New proof of a sentence about permutations (a new prof. of a
theorem on permutations). archive of mathematics and physics, 3:27, 1918.

[87] Sriram Raghavan and Hector Garcia-Molina. Representing web graphs. In Proceed-
ings 19th International Conference on Data Engineering (Cat. No. 03CH37405), pages
405–416. IEEE, 2003.

114



Bibliography

[88] Naila Rahman, Rajeev Raman, et al. Engineering the louds succinct tree repre-
sentation. In International Workshop on Experimental and Efficient Algorithms, pages
134–145. Springer, 2006.

[89] Keith H Randall, Raymie Stata, Rajiv G Wickremesinghe, and Janet L Wiener. The
link database: Fast access to graphs of the web. In Proceedings DCC 2002. Data
Compression Conference, pages 122–131. IEEE, 2002.

[90] Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004.

[91] A. H. Robinson and C. Cherry. Results of a prototype television bandwidth
compression scheme. Proceedings of the IEEE, 55(3):356–364, 1967.

[92] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interac-
tive graph analytics and visualization. In AAAI, 2015.

[93] Kunihiko Sadakane and Gonzalo Navarro. Fully-functional succinct trees. In
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 134–149. SIAM, 2010.

[94] Claude E Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[95] Quan Shi, Yanghua Xiao, Nik Bessis, Yiqi Lu, Yaoliang Chen, and Richard Hill.
Optimizing k2 trees: A case for validating the maturity of network of practices.
Computers & Mathematics with Applications, 63(2):427–436, 2012.

[96] Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema Raghavan. Sweg:
Lossless and lossy summarization of web-scale graphs. In The World Wide Web
Conference, pages 1679–1690, 2019.

[97] Torsten Suel and Jun Yuan. Compressing the graph structure of the web. In
Proceedings DCC 2001. Data Compression Conference, pages 213–222. IEEE, 2001.

[98] Luca Versari, Iulia-Maria Comsa, Alessio Conte, and Roberto Grossi. Zuckerli: A
new compressed representation for graphs. IEEE Access, 8:219233–219243, 2020.

[99] Gregory K Wallace. The JPEG still picture compression standard. IEEE transactions
on consumer electronics, 38(1):xviii–xxxiv, 1992.

115



BIBLIOGRAPHY

[100] Rajiv Wickremesinghe, Raymie Stata, and Janet Wiener. Link compression in the
connectivity server. Technical report, Technical report, Compaq systems research
center, 2000.

[101] Herbert S Wilf and Nancy A Yoshimura. Ranking rooted trees, and a graceful
application. In Discrete Algorithms and Complexity, pages 341–349. Elsevier, 1987.

[102] Frans MJ Willems, Yuri M Shtarkov, and Tjalling J Tjalkens. The context-tree
weighting method: Basic properties. IEEE transactions on information theory,
41(3):653–664, 1995.

[103] Aaron D Wyner and Jacob Ziv. The sliding-window Lempel-Ziv algorithm is
asymptotically optimal. Proceedings of the IEEE, 82(6):872–877, 1994.

[104] N. A. Yoshimura. Ranking and Unranking Algorithms for Trees and Other Combinatorial
Objects. PhD thesis, University of Pennsylvania, USA, 1987.

[105] Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec. BioSNAP
Datasets: Stanford biomedical network dataset collection. http://snap.

stanford.edu/biodata, August 2018.

[106] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on information theory, 23(3):337–343, 1977.

116

http://snap.stanford.edu/biodata
http://snap.stanford.edu/biodata

	Contents
	Introduction
	First part: general-purpose compression
	Second part: graph compression
	Notation and definitions
	Published material

	General-purpose compression
	Compression concepts and techniques
	Entropy of a random variable
	Entropy of a text
	Integer coding
	Unary coding
	Rice coding
	Elias gamma coding
	Elias delta coding
	Zeta codes
	Pi codes

	Entropy coding
	Prefix coding and Huffman coding
	Arithmetic coding
	Asymmetric Numeral Systems

	Higher order entropy and entropy coding

	Hybrid Integer Encoding
	Encoding scheme
	Analysis
	Experimental results

	Novel techniques for high-order entropy coding
	Context clustering
	Heuristic algorithm

	Decision-tree-based context modeling
	Optimal algorithm for n=1, k>nt
	Optimal algorithm for nt=1
	Heuristic algorithm in pseudolinear time for n=1
	Heuristic for the general case



	Graph compression
	Common techniques for graph compression
	Raw link encoding
	Grammar- and dictionary-based
	Class-tailored
	Compression of trees

	Tree-based
	Copying models
	Brief summary of WebGraph

	Decomposition
	Reordering

	Graph compression in theory
	Erdös-Rényi
	Stochastic Block Model
	Uniform attachment
	Copy model
	Preferential attachment (Barabási-Albert)
	Simplified Copy Model

	Graph compression in practice
	Encoding Integers
	Negative integers

	Graph compression in Zuckerli
	Context management
	Choice of reference list and chain
	Full decompression
	List decompression
	Approximation guarantee
	Details on computing the optimal sub-forest of F

	Experimental results
	Datasets
	Parameter Choice
	Effect of Approximation Algorithm and Context Modeling
	Compression Results and Resource Usage
	Performance Evaluation

	Further improvements on the Zuckerli scheme
	Tree-based context modeling
	Reference selection algorithm
	Experimental results


	Conclusions
	Future work

	Bibliography


