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Abstract

This thesis considers a new algorithmic framework for listing maximal sets satisfying
a given property (e.g. being a clique, a cut, a cycle, etc.), which fall within the general
framework of set systems. A set system F over a ground set U (e.g. the network nodes)
is a collection of subsets of U for which there exists some function that checks if an
arbitrary subset of U belongs to F. For all maximal subsets in F under inclusion to be
listed, the ambitious goal is to cover a large class of set systems while preserving the
efficiency of their enumeration algorithms at the same time. The best-known ones list
the maximal subsets in time proportional to their number but may require exponential
space. This thesis improves the state of the art in two directions by introducing an algo-
rithmic framework that, under suitable conditions, simultaneously (i) extends the class
that can be solved efficiently to commutable set systems, and (ii) reduces the additional
space usage from exponential in |E| to stateless, thus accounting for just O(q) space,
where q 6 |E| is the largest size of a maximal set.
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Chapter 1

Introduction

Algorithms for graph listing have a long history and even if they were born in the 70s in
the context of enumerative combinatorics and computational complexity [17, 26, 32, 38,
44], the interest has quickly broadened to a variety of other communities in computer
science and not, massively involving algorithm design techniques.

In network analysis discovering special communities corresponds to finding all the
subgraphs with a given property [1, 15, 27, 29, 30, 42]. In bioinformatics, listing all the
solutions is desirable, as single or few solutions may not be meaningful due to noise of
the data, noise of the models, or unclear objectives [9, 21, 25, 28, 40]. In graph databases,
graph structures are used for semantic queries, where nodes, edges, and properties are
used to represent and store data; retrieving information corresponds to find all the
suitable subgraphs in these databases [2, 11, 46]. When dealing with incomplete infor-
mation, it may be impossible to completely satisfy a query. Subgraph listing algorithms
can find answers that maximally satisfy a partial query; for instance, there is a one-to-
one correspondence between the results of a join or full disjunction query and certain
subgraphs of the assignment graph, a special graph obtained by combining the relational
database with the given query. Moreover, the kind of subgraphs to look for depend not
only on the database, but also on the query [11].

In this scenario, graph enumeration has left the theoretical border [24] to meet more
stringent requirements: not only a given listing problem must fit a given class of com-
plexity, but its algorithms must be efficient also in real-world applications. Algorithm
design has made a big effort to generalize the graph properties to be enumerated and
to unify the corresponding approaches [3, 8, 10, 26, 43]. These generalizations allow the
same algorithm to solve many different problems.

This thesis presents some of the work that has been done so far and new results that
fit into this line of research: on one side, we want to obtain efficient listing algorithms
able to deal with large networks; on the other side, we aim at designing an algorith-
mic framework which solves simultaneously many problems and leave the designer in
charge of few core tasks depending on the specific application. In particular, we focus
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2 CHAPTER 1. INTRODUCTION

on efficient enumeration algorithms for maximal subgraphs satisfying a given prop-
erty (e.g. being a clique, a cut, a cycle, a matching, etc.), as they fall within the general
framework of set systems [10, 26].

This thesis is organized as follows: Chapter 1 contains an overview of the thesis
and some well-known definitions necessary to develop the content. Chapter 2 contains
an introduction to set systems, that gives definitions, examples, known lower bounds
and known algorithm for the enumeration of its maximal sets. Chapter 3 explains how
the new algorithmic framework works, and Chapter 4 gives some applications of the
framework to enumeration problems.

The original work in this thesis is mainly contained in Chapter 2 for the introduction
of commutable set systems, Chapter 3 for the new algorithmic framework and Chap-
ter 4 for its applications, except for Subsection 3.2.1 that gives an improved overview
over already-existing work. Moreover, parts of the thesis build upon further work that
was published in [12, 13].

1.1 Preliminaries

As graphs play a vital role in this thesis, we start by stating some standard definitions:
an undirected graph G is a pair (V, E) with E ⊂ V × V . The elements of V are called
nodes of the graph, while the elements of E are called edges. The edge set of G must
be symmetrical, i.e. if (a, b) ∈ E then (b, a) ∈ E, and must not contain self-loops (i.e.
(a, a) 6∈ E for every a in V). We say that a node v is a neighbour of w if (w, v) ∈ E.
Moreover, we denote withNG(v) the set of all neighbours of v in G. When the graph is
unambiguous, we use N(v).

A directed graph G is a pair (V,A) with A ⊂ V × V . The elements of V are called
nodes, while the elements of A are called arcs. As with undirected graphs, G must not
contain self-loops. A node v is a in-neighbour of w if (v,w) ∈ A. Similarly, it is an out-
neighbour of w if (w, v) ∈ A. The sets of all in- and out-neighbours is denoted as N−(v)

and N+(v), respectively.
When not further specified, graph means undirected graph.
A path in a graph G is a sequence of nodes v1, . . . , vk such that (vi, vi+1) is an edge

(or an arc) for every i = 1 . . . k − 1. We say that the length of this path is k − 1 (i.e. the
number of edges or arcs involved in it). A subset of nodes of G is connected if, for every
pair of nodes in it, there is at least a path that connects them that is made only of nodes
of the subset. As being connected is an equivalence relation, Gmay be partitioned into
equivalence classes that are called connected components.

A subgraph of a graph G is the graph that has as nodes a given subset V ′ of V and
as edges some of the edges in G that have as endpoints two members of V ′. An induced
subgraph is a subgraph that has all possible edges of E for that choice of nodes.

A graph is bipartite if it has no odd cycles or, equivalently, if it can be partitioned
into two sets A, B such that there is no edge between any pair of nodes in A nor in B.
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We assume the nodes of a graph to be ordered, and denote them as v1, . . . , vn, where
n = |V |.

We will also use the concept of partial order:

Definition 1.1. A partial order is a binary relation v on a set A that is

1. reflexive, i.e. a v a for every a in A,

2. transitive, i.e. if a v b and b v c, then a v c,

3. antisymmetric, i.e. if a v b and b v a, then a = b.

If v also satisfies that ∀a, b ∈ A either a v b or b v a, we call v a total order on A.

An important consequence of the fact that orders are transitive and antisymmetric
is that an order contains no cycles, i.e. it is impossible to have a set of distinct elements
a1, . . . , an in A such that a1 v · · · v an v a1.

If v is an order, we write a @ b to mean that a v b and a 6= b.
Finally, we say that an element m is maximal if there is no other element v such that

m @ v.
An interesting family of orders is the lexicographical order. If A is a set with an

order v, we define an order on the set of all the tuples of elements of A as follows. Let
P = (p1, . . . , pk) and Q = (q1, . . . , qh) be two tuples of elements of A.

• If P is a prefix of Q (i.e. k 6 h and pi = qi for 1 6 i 6 k), then P ≺ Q.

• Otherwise, let i be the first index such that pi 6= qi. Then, P ≺ Q if and only if
pi @ qi.

We may also define a lexicographical order on the power set 2A ofA. More precisely,
the order between any two subsets of A is the same as the order between the tuples
that have as elements the same elements, in ascending order. As an example, take sets
B = {9, 3, 7, 5} and C = {7, 5, 3, 11} in N. The corresponding sorted tuples are (3, 5, 7, 9)

and (3, 5, 7, 11); the former is lexicographically smaller than the latter, so we say that B
is lexicographically smaller than C.

Another interesting order is the inclusion order on the power set of any setA: given
B,C ∈ 2A, we say that B is less than C if and only if B ⊂ A.

1.2 Enumeration complexity measures

We call α the number of solutions of the enumeration problem. Since for many enu-
meration problems α may be exponential in the size of the input, traditional complex-
ity definitions are not enough to provide all the information on the running time of an
enumeration algorithm. For example, it was proven that in a graph there may be up to
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3n/3 maximal cliques [41], so the worst-case complexity of any enumeration algorithm
for maximal cliques may not be any lower than that.

Considering this fact, complexity classes for enumeration algorithms have been de-
fined [20] in a way that takes into account the effective number of solutions of the given
problem. We will report the most useful among these classes here.

We say that an algorithm

• runs in polynomial total time if its running time is bounded by a polynomial in the
input size and in α.

• runs in incremental polynomial time if the time needed to generate solution number
X 6 α is bounded by a polynomial in the input size and in X.

• has polynomial cost per solution if its running time is bounded by a polinomial in
the input size times α.

• produces incremental output if it outputs the first X 6 αwithin a time bounded by
X times a polynomial of the input size.

• has bounded delay if the running time between any two consecutive produced so-
lutions is bounded by a polynomial in the input size.



Chapter 2

Set systems

This chapter introduces the notion of set systems, discussing some useful classes of
them and giving an overview on what is known about enumeration algoritms that list
all their maximal elements. Section 2.2 gives some examples of families that form vari-
ous kinds of set systems.

2.1 Definitions

One of the most well-known enumeration problem is that of enumerating all the max-
imal cliques in a graph. A clique is a complete subgraph of a given graph G (a more
formal definition is given in Definition 2.7), and so it may be considered as a subset of
the nodes of the graph. Families of solutions given by the subsets of a given set are
a recurring situation in enumeration problems (as another example, feasible solutions
of a knapsack problem may be considered subsets of a given set), so this situation has
justified the following general definition.

Definition 2.1. A set system F over a support set U is a nonempty family of subsets of
U, i.e. F ⊂ 2U and F 6= ∅. A member of F is called a feasible set.

This thesis will focus mostly on set systems built on graphs. In this case, unless
otherwise noted, the support set of the set system will be the set of the nodes of the
graph.

As set systems are way too generic to provide any meaningful result, the following
subclasses have been studied so far (see for example [6]).

Definition 2.2. An accessible set system F over U is a set system that satisfies the
following property: for any nonempty X ∈ F, there is an element x ∈ X such that
X \ {x} ∈ F.

Definition 2.3. A strongly accessible set system F over U is a set system that satisfies
the following property: for any nonempty X ∈ F and any Y ⊂ X that belongs to F, there

5
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set systems

accessible set systems

strongly accessible set systems

commutable set systems

independence systems

Figure 2.1: Relationships between the various kinds of set systems.

is an element x ∈ X\Y such that X\{x} ∈ F or, equivalently, there is an element y ∈ X\Y
such that Y ∪ {y} ∈ F.

Definition 2.4. An independence system F over U is a set system that satisfies the
following property: for any nonempty X ∈ F, every Y ⊆ X belongs to F too.

From the definitions, it clearly follows that any independence system is also a strongly
accessible set system, and any strongly accessible set system is also an accessible set
system. Our main focus will be on a new class that sits in the middle of independence
systems and strongly accessible set systems. These relationships are represented in Fig-
ure 2.1.

Definition 2.5. A commutable set system F over U is a strongly accessible system that
satisfies the following property: for any X ∈ F and any Y ⊆ X that belongs to F, if
x, y ∈ X \ Y are such that Y ∪ {x} ∈ F and Y ∪ {y} ∈ F then Y ∪ {x, y} ∈ F.

Another possible definition is the following one:

Definition 2.6. A commutable set system F over U is a strongly accessible system that
satisfies the following property: for any X ∈ F and any Y ⊆ X that belongs to F, if
A,B ⊆ X are members of F that properly contain Y, then A ∪ B ∈ F.

Lemma 2.1. Definition 2.5 and Definition 2.6 are equivalent.
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Proof. Definition 2.6 trivially implies Definition 2.5.
If |A \ X| = 0 then there is nothing to prove. We will first prove the equivalence in

the case in which A = X ∪ {a}.
If B = X ∪ {b}, then the thesis is exactly Definition 2.5. Otherwise let b ∈ B \ X be

such that X ∪ {b} ∈ F (such a b exists because F is strongly accessible). Then we have
that X ∪ {a, b} ∈ F because of Definition 2.5. We may repeat this reasoning to the pair
of sets X∪ {a, b} = A∪ {b} and B, both of which contain X∪ {b} and whose union is still
A ∪ B. Since now the number of elements that should be added to the common part of
the two sets to obtain B is reduced, this completes the proof by induction.

Let us now consider the general case, and let a ∈ A\X be chosen such that X∪ {a} ∈
F. Thanks to what we just proved, we know that B∪ {a} ∈ F. As before, we may repeat
this process on A and B ∪ {a}, both of which contain X ∪ {a} and whose union is still
A ∪ B. By induction, this completes the proof.

As a set system may contain an exponential number of members, we will assume
that the set system is not given explicitely, but through a membership oracle, a function
fF that takes a subset of U and returns true if that subset is a member of F.

We will focus on the task of enumerating all the maximal (under inclusion) members
of F. This is a good compromise between the need of knowing the whole F and the
issue of its size: all members of F are included in a maximal one and, for set systems
that are at least strongly accessible, any element of F may be found from a maximal one
by iteratively removing an element.

Notation. Throughout the thesis, nwill denote the cardinality of U, qwill denote the
maximum size of any member of F and αwill denote the number of maximal elements
in F.

2.2 Some accessible set systems

One of the most studied examples of independent systems are maximal cliques. This
problem has been studied in a lot of contexts, including bioinformatics [14, 35], com-
putational chemistry [33, 23, 4] and social network analysis [18, 45]. The family may be
described as follows:

Definition 2.7 (Clique). Given a graph G = (V, E), a subset C of its vertices is called a
clique if, for every a 6= b ∈ C there is an edge between a and b.

Another studied example is the k-plex, which is a generalization of a clique that
relaxes the condition that all pairs of nodes must be connected:
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Definition 2.8 (k-plex). Given a graph G = (V, E), a subset C of its vertices is called a
k-plex if, for every a in C,

|C ∩N(a)| > |C|− k

holds.1

This definition of k-plex has some practical issues, such as every set of size at most
k being a k-plex. To reduce the impact of this issue, a minor variant of this family has
been considered [5]:

Definition 2.9 (Connected k-plex). Given a graph G = (V, E), a subset C of its vertices
is called a connected k-plek if it is a k-plex and it is connected.

1
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4
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6

2.2a: Clique with six nodes
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2.2b: 4-plex with six nodes
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2.2c: Connected 2-plex with six nodes

An example of a clique, a 4-plex and a connected 2-plex can be found in Figure 2.2a,
Figure 2.2b and Figure 2.2c respectively. In particular, Figure 2.2b shows a degener-
ate example of a k-plex that is not even connected, which should not be considered
interesting as the objective of finding k-plexes is to find dense structures.

It is easy to see that any k-plex C of size at least 2k − 1 is also a connected k-plex:
indeed, consider any two nodes a and b in C. If they are connected by an edge, then
there is a path between them and we are done. Otherwise, suppose that their neigh-
bourhoods are disjoint in C. Then:

|C|− 2 = |C \ {a, b}| > |C ∩ (N(a) ∪N(b))| = |C ∩N(a)|+ |C ∩N(b)| > 2|C|− 2k

1This reduces to the definition of clique when k = 1.



2.2. SOME ACCESSIBLE SET SYSTEMS 9

1

2
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6

Figure 2.3: Black-connected clique with six nodes. White edges are dashed, black edges
are represented with a continuous line.

which implies that 2k − 2 > |C|, which is a contraddiction. So their neighbourhoods
must intersect in some node v ∈ C, providing a valid path a, v, b between the two
nodes.

This implies that considering just connected k-plexes does not alter the results for
bigger elements of the family, while removing a good amount of small sets.

Unfortunately, connected k-plexes do not form an independent system (as can easily
be seen by considering the subset {1, 4} of the connected 2-plex of Figure 2.2c: indeed,
this subset is not a connected 2-plex because it is not connected), but they still are com-
mutable set system. This can be easily seen by using Definition 2.6, as any subset of a
k-plex is still a k-plex and the union of any two connected sets that share at least a node
is still connected.

Another interesting family that is not an independent system is the family of black-
connected cliques. In this context, we have a colored graph that is composed of white
and black edges:

Definition 2.10 (Black-connected clique). Given a graph G = (V, E) in which every
edge has an associated color (either black or white), a subset C of its vertices is a black-
connected clique if it is a clique and if it is connected in the graph where all white edges
are removed.

Figure 2.3 gives an example. Moreover, from the example it is clear that black-
connected cliques do not form an independence system, as the subset {1, 4} is not a
black-connected clique.

This problem arises naturally while studying molecule similarity in bioinformat-
ics and computational chemistry[22, 12]. As with connected k-plexes, this family is a
commutable set system.

Another family that may be interesting to study for network analysis is the family
of connected bipartite (induced) subgraphs of a given graph G:

Definition 2.11 (Connected bipartite (induced) subgraph). Given a graph G = (V, E), a
subset C of its edges (vertices) is a connected bipartite (induced) subgraph if the sub-
graph it defines is both bipartite and connected.
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The previous examples of set systems that are not independence systems all share
one common trait: they are obtained from independence systems by adding a con-
nectivity constraint. These kinds of independence systems have been called connected
hereditary, and an algorithm for enumerating them (that uses exponential memory) was
given in [10].

It is natural, then, to wonder if any commutable set system is, in fact, a connected
hereditary property. This conjecture can be proven false by considering the family F

of cliques that all share a given node v in common: indeed, they are a commutable
set system, but they are not an independent set system nor they can be obtained as
the family of all cliques that satisfy a connectivity constraint (because in that case any
singleton would be a member of the family, while in this case {v} is the only singleton
that belongs to F).

The techniques used for the enumeration of set systems may be used to solve enu-
meration problems that one would not ordinarily associate with set systems. For ex-
ample, one might enumerate all the s-t paths by enumerating the maximal elements of
the set system made of all paths that begin in a certain node s and may be extended to
reach a certain destination t.

In a similar way, the set of all sub-forests in a graph form an independence system,
whose maximal elements are spanning trees: so it is possible to enumerate spanning
trees with techniques that enumerate independence systems.

Another family that may be considered an independence system is the (complement
of) s-t (vertex-)cuts in a graph:

Definition 2.12 (s-t (vertex-)cuts). Given a connected graphG = (V, E) and two vertices
s, t, a subset C of E (V \ {s, t}) is an s-t (vertex-)cut if and only if the graph obtained by
removing C from G has s and t in two different connected components.

This family is clearly not even accessible, but the family formed by its complement
is. It may be defined directly as the family of all subsets of E (or V \ {s, t}) that induce
connected components such that s and t belong to different components.

A similar family to the previous one is given by the feedback vertex (arc) set prob-
lem:

Definition 2.13 (Feedback vertex (arc) set). Given a graph (possibly directed) G =

(V, E), a feedback vertex (arc) set is a subset F of V (E) such that the graph obtained
from G by removing the elements in F contains no cycles.

As before, this is not an accessible family, but considering its complement we ob-
tain an independence system. If we furthermore reduce ourselves to consider subset
that leave the remaining graph connected, we obtain a commutable set system. This
problem has been studied before, but known algorithms use an exponential amount of
memory [47, 36].
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2.3 Lower bounds

It was proven in [26] that it is not reasonable to try to find an algorithm that is able to
find the maximal sets of any independence system in polynomial total time, as shown
by the following reduction:

Theorem 2.1 (Lawler et al [26]). There is no algorithm that enumerates all the maximal sets
in any independence system in polynomial total time, unless P = NP.

Proof. Let F(X1, . . . , Xn) be a boolean expression in conjunctive normal form. We will
define an independence system on the ground set E = {T1, F1, . . . , Tn, Fn} as follows.
Let J be any subset of U and xi(J) be defined as:

xi(J) =


true if Ti ∈ J, Fi 6∈ J
false if Fi ∈ J, Ti 6∈ J
undefined if Ti 6∈ J, Fi 6∈ J
overdefined otherwise

We say that J ∈ F if and only if one of the following holds:

• The assignment Xi = xi(J) satisfies the boolean formula F, or

• We have Ti 6∈ J and Fi 6∈ J.

This is clearly an independence system, as any subset of a J that satisfies the second
condition still satisfies it and any subset of a J that satisfies the first condition has at
least one undefined literal.

Moreover, any solution to F provides a maximal set for F; maximal sets not obtained
this way must have at least an undefined literal, so they are of the form E \ {Ti, Fi} for
some i. We call these maximal sets trivial. Note that there are n trivial maximal sets.

Let us now suppose that there is an algorithm which is able to enumerate all the
maximal elements of F in P(n,α) time. Then, if we let this algorithm run for P(n,n)
time, one of the following situations may happen:

• The algorithm terminates and finds no non-trivial maximal set: we know that F
has no solution.

• The algorithm terminates and finds a non-trivial maximal set: we know that F has
a solution.

• The algorithm does not terminate: this implies that F has more than n maximal
solutions, so at least one of them must be non-trivial and thus F must have a
solution.
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This reasoning gives an algorithm that takes P(n,n) (i.e. polynomial) time to check
if F has a solution or not, thus proving the reduction.

Moreover, from the same proof another condional lower bound follows, based on
the well-known Strong Exponential Time Hypothesis of Impagliazzo and Paturi[19].

Corollary 2.1. There is no algorithm that enumerates all the maximal sets in any independence
system in O(2

q
2−εP(α,n)), unless SETH is false.

To circumvent this issue, any general technique that promises to enumerate maxi-
mal elements in strongly accessible set systems relies on some form of problem-specific
insight. In particular, certificates and restricted problems have been considered.

Definition 2.14 (Certificate). A certificate for a given enumeration problem is some kind
of information that can be computed in polynomial time and guarantees the existence of
at least one solution for the given subproblem that must be solved during the recursive
enumeration.

Definition 2.15 (Restricted problem). Given a strongly accessible set system F on U, a
maximal feasible set F and an element v ∈ E \ F, the restricted problem P(F, v) is the
problem of enumerating all the maximal elements of the family

GvF = {A ∈ F : A ⊆ F ∪ {v}}

Figure 2.4 represents the solutions of the restricted problem that is obtained for the
connected k-plex problem from the k-plex of Figure 2.2c by adding node 7. The solution
on top is the trivial solution (i.e. the solution that generated the restricted problem),
while the other four figures are obtained by choosing 7 and all the possible subsets of
non-neighbours of 7, and choosing the other nodes accordingly.

2.4 Previous algorithms

Previous works on the enumeration of maximal elements of set systems are mainly
based on two different techniques: binary partition and reverse search. See for exam-
ple [34] for an overview of enumeration algorithms, where its Chapter 9 deals with
enumeration of subgraphs satisfying certain properties.

2.4.1 Binary partition

Binary partition is a general, recursive scheme that works by splitting the problem into
the following subproblems: “enumerate all maximal sets that contain all the elements
that belong to set S, no elements that belong to set X and possibly some of the elements
that do not belong to either of them”. The recursion starts with S = X = ∅, and
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Figure 2.4: Example of a restricted problem using the connected 2-plex of Figure 2.2c
and the extra node 7. The figures below highlight the non-trivial solutions, the one on
the top the original k-plex that defines the restricted problem.

proceeds by choosing, at every recursive step, some node v in V \ (S ∪ X) and then by
producing one or two recursive children, with v added to X or to S. This second option
is only possible if we have that S ∪ {v} ∈ F, as otherwise the algorithm would produce
incorrect solutions. When S ∪ X = V , the recursion ends and the current solution S is
generated as output.

This scheme guarantees a polynomial time per solution whenever we have a cer-
tificate for the problem we are considering. Indeed, the presence of a certificate allows
us to immediately stop the recursion in nodes where we know there will not be any
solution, producing a recursion tree that has at most αn nodes. As the cost of the com-
putations done in every node of the recursion tree is polynomial in the input size, the
total cost is polynomial in the input and the number of solutions. Further optimiza-
tions (dependent on the problem) usually allow to give algorithms that are extremely
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efficient in these cases.
When no certificate is available, no polynomial upper bound in the input and out-

put size can usually be given. Nonetheless, algorithms that are very efficient in practice
may be obtained by using some sort of heuristic that allows to eliminate a good per-
centage of the “dead ends” of the recursion tree.

As an example, binary partition can easily be used to enumerate spanning trees or s-
t paths in polynomial time per solution. For the first case, a simple certificate is given by
the check that the graph obtained by removing all the excluded edges is still connected,
as that guarantees the existence of a spanning tree. As for s-t path, a certificate can be
obtained by checking that the endpoint of path defined by the current set of “taken”
edges is still able to reach t, without using any excluded edge.

The Bron-Kerbosch algorithm [7], used for enumerating maximal cliques and the
basis of a lot of algorithms for the enumeration of cliques, k-plexes and black-connected
cliques [22], is a straightforward application of binary partition, with a smart pivoting
rule that allows to remove most “unwanted” recursive nodes.

2.4.2 Reverse search

Reverse search is a general technique in enumeration which was initially introduced by
Avis and Fukuda [3]. It works by implicitely constructing a directed graph that has as
nodes all the solutions to the enumeration problem, with an arc from a certain solution
P to another solutionQ if the second can be obtained in a certain way from the first. As
long as the graph is properly connected, a simple graph visit starting from any solution
will then enumerate all the solutions to the problem.

As this graph may contain multiple paths to a single solution, we either need to
keep track of all the solutions already found so far or we need some way to remove
edges from the graph, making it a directed forest whose roots are known.

In the first case, there is no performance penalty, but the resulting algorithm takes
exponential memory to run. In the second case, some more computations may be re-
quired to discard unneeded edges.

Regarding set system enumeration, this technique is usually applied by building
a graph over all the maximal elements of F. Given a solution S, outgoing edges are
obtained by using a node from V \ S as a “guide” to find new maximal elements. In
particular, this is usually done by solving the restricted problem on (S, v) and applying
some form of post-processing to the found solutions. Examples and further details are
provided in Section 3.2.

This idea is the one at the basis of most algorithms for maximal clique enumer-
ation that guarantee polynomial time per solution, as in [13]. Moreover, it was also
employed in [10] to give an algorithm for the enumeration of maximal elements in an
independence system. In the same paper, the authors give an algorithm for the enu-
meration of maximal sets that satisfy “connected hereditary” properties, using expo-
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nential space. As the sets that satisfy connected hereditary properties are a special case
of commutable set systems, this thesis improves their work by removing the need for
exponential space.



16 CHAPTER 2. SET SYSTEMS



Chapter 3

Framework description

This chapter will explain how the new framework for the enumeration of maximal el-
ements in commutable set systems works. We will start by giving some necessary def-
initions, then we will proceed to explain the algorithm itself. Throughout this section,
we assume the elements of U to be ordered with an arbitrary total order.

3.1 Core concepts

We will now introduce some concepts that will be fundamental while explaining how
the algorithm works. As they are not very intuitive, most definitions will have an ex-
ample on the black-connected clique C of Figure 2.3.

Definition 3.1. Given a commutable set system F and one of its feasible sets S, we say
that s is a seed of S if s ∈ S and {s} ∈ F. The canonical seed of S, denoted by seed(S), is
the smallest possible seed according to the ordering of the elements of U.

Any singleton inC is a seed, since it is both a clique and connected with black edges.
So, its canonical seed is 1.

The concept of level, that is introduced with the next definition, will be fundamental
to define a complete function (one of the main ingredients in the reverse search algo-
rithm) that satisfies the property stated in Lemma 3.2 but is not NP-hard to compute
(see Lemma 3.1). Moreover, the properties of the complete function obtained using this
definition will allow us to prove Theorem 3.1.

Definition 3.2. Given a commutable set system F, one of its feasible sets S and a seed s
of S, we define the level of an element v with respect to s as follows:

• if v = s, then the level of v is 0.

• let k be the smallest integer such that there is a set S ′ ⊂ S that is composed of
elements of level 6 k and such that S ′ ∪ {v} ∈ F and s ∈ S ′. Then the level of v is
k+ 1.

17
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Figure 3.1: Black-connected clique of Figure 2.3 with nodes partitioned into groups
according to their level. Only black edges are represented, and the canonical seed 1 is
used.

• if there is no such subset, we say that the level of v is ∞.

We will use levelsS(v) to denote the level of v in Swith respect to seed s. When the seed
is not specified, it is assumed to be the canonical seed.

Figure 3.1 represents C according to its levels. It follows immediately from the def-
inition of level that the level of a node v with respect to a given seed s is given by the
distance between v and s (i.e. the length of the shortest path) according to black edges.
This actually holds true for any connected hereditary family.

These two definitions are crucial to allow us to define the following order between
two feasible sets.

Definition 3.3. The level order ≺ between any two solutions P, Q of a commutable set
system F is defined as follows:

• Let lP = {(levelP(v), v) ∀v ∈ P}, the set pairs made by the level of an element and
the element itself.

• Let lQ be defined in the same way.

• We say that P ≺ Q if and only if lP is smaller than lQ using the lexicographical
order between sets defined in Section 1.1.

According to this definition, the set corresponding to C, i.e. the set of pairs of the
form (dist(s, v), v), is {(0, 1), (1, 3), (1, 5), (2, 6), (3, 2), (3, 4)}.

We define complete(S, s) as the maximal solution that is obtained from S by iter-
atively adding the element v ∈ E \ S such that adding v keeps the current set in F

and that, among all those possible choices, minimizes (levelsS(v), v). The definition of
complete(S) takes into account that, while we are adding elements to S, we might add
an element s ′ that is smaller than seed(S). In that case, subsequent iterations consider
the levels to be relative to the new canonical seed.
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Figure 3.2: A graph with black and white edges that is used in the proof of Lemma 3.1.
Only black edges are represented, white edges are implicitely assumed to be present
between any two nodes, except for the ones that already have a black edge or that have
a crossed-out red edge. Assuming k = 3 and n = 5, the figure represents the formula
(x1 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x2 ∨ ¬x3 ∨ x4 ∨ ¬x5)

In previous works, complete(S) was simply defined as the lexicographically min-
imum maximal solution that contains S. Unfortunately, for a generic commutable set
system this function is NP-hard to compute, as stated by the following lemma.

Lemma 3.1. Given a graph G whose edges are either black or white and a non-maximal black-
connected clique X of G, it is NP-hard to find the lexicographically minimum among the maxi-
mal black-connected cliques containing X.

Proof. We prove that a complete(X) function that returns the lexicographically mini-
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mum black-connected clique containing X can be used to solve a SAT problem in poly-
nomial time, by building a graph with a number of nodes linear in the amount of the
clauses and variables in the formula.

Given a SAT formula in conjunctive normal form with n variables x1 . . . xn and
k clauses d1 . . . dk, we build the the graph in Figure 3.2, whose nodes are C1 . . . Ck,
T1 . . . Tn, F1 . . . Fn and Y1 . . . Yn, labelled increasingly in this order (i.e., nodes C1 . . . Ck
have smaller label than all other nodes). Each Yi is connected with a black edge to Ti
and Fi, and, except for Y1, also with Ti−1 and Fi−1. Each Ci, which corresponds to
di, is connected with black edge to Tj (resp. Fj) whether di contains a positive (resp.
negative) occurrence of xj. Hence, nodes in C1 . . . Ck are connected with black edge
to an arbitrary amount of Ti and Fi nodes, but not to any Yi node. All other pairs of
nodes are connected with a white edge, except for the pairs Ti,Fi (symbolized by the
crossed-out red edge in Figure 3.2).

It is straightforward to see that any maximal black-connected clique in this graph
will contain exactly one of Ti and Fi, for any i, and that any maximal black-connected
clique containing all nodes in C1 . . . Ck will be lexicographically smaller than any that
does not contain all of them (as they have the smallest labels).

Consider complete({Y1}), the lexicographically smallest maximal black-connected
clique containing Y1. Any black-connected clique containing Y1 and all Ci nodes rep-
resents a satisfying assignment for the formula at hand. Indeed, for each Ci node to be
reachable from Y1 with black edges, at least one of the Tj or Fj nodes connected to Ci
must be in the black-connected clique; the set of Ti and Fi nodes in the black-connected
clique will thus give us the value (true or false) of the corresponding variable xi (recall
that we cannot have the pair Tj-Fj in the same black connected clique). Hence, in order
to verify that the formula is satisfiable, we only need to compute complete({Y1}) and
check whether this contains all Ci nodes.

Analogously, we say that P is a prefix of S if it is obtained from S by iteratively
removing the element with the the highest level and, in case of ties, the highest element
among those with maximal level. Note that the definition of levels, combined with the
properties of commutative set systems, ensures that removing a node with maximal
level will not cause S to become unfeasible. We also say that P is a prefix of S with respect
to s to explicitely specify that s is the seed to be used.

Given the set form of C, it follows that its prefixes are given by {1}, {1, 3}, {1, 3, 5},
{1, 3, 5, 6}, {1, 3, 5, 6, 2} and {1, 3, 5, 6, 2, 4}, that are all black-connected cliques.

Note that, if P is a subset of S, levelsP(v) > levelsS(v). If P is a prefix of S, then the
equality holds for any v such that both levels are finite.

By the definition of complete, any prefix of Smay be computed by executing a lim-
ited number of steps of complete(P), where P is any smaller prefix of S, while limiting
the selection of elements to add to the current solution to only elements that are part of
S.
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Thanks to the definition of complete(S) and the definition of level ordering, we
obtain the following important lemma.

Lemma 3.2. Given a feasible set S, if Q is any maximal feasible set of F such that S ⊆ Q and
seed(S) = seed(Q), we have complete(S) � Q.

Proof. If seed(complete(S)) 6= seed(S), then the thesis clearly follows, as the seed is the
only level 0 element. Moreover, if Q = complete(S), there is nothing to prove.

Let now i > 0 be the smallest level such that the set of elements of level i in Q
is different from the set of elements of level i in complete(S). Moreover, let v be the
smallest element that belongs to exactly one of these two sets.

We will now prove that v does, in fact, belong to level i of complete(S). Let X be
the union of all levels smaller than i in Q, as well as of all elements on level i that are
smaller than Q. Thanks to the definitions of levels and to the alternative definition of
commutable set systems (Definition 2.6), we have that X ∪ {v} is feasible, as it may be
obtained as the union of feasible sets all containing seed(Q) and all contained in Q.
Moreover, since S is feasible, is contained in Q and contains seed(Q), we have that
X ∪ {v} ∪ S is feasible. Since it can be easily seen that X ∪ S is one of the sets obtained
during the iterations that build complete(S), we have that vwas considered for adding
during that iteration. As v was chosen as the smallest node in the difference between
level i of the two sets, we know that at that iteration no node smaller than vwas viable,
and so v was added to X ∪ S by complete.

Now, if v is bigger than all the elements in level i of Q, we have that level i of
complete(S) is a superset of level i of Q. Since Q is maximal, it cannot be a proper
subset of complete(S), so it must have at least one element on level i + 1. Otherwise,
level i of complete(S) compares smaller than level i of Q, so by the definition of level
order it follows that complete(S) ≺ Q.

All this machinery allows us to definte the concepts used for executing the reverse
search.

Definition 3.4. If a maximal solution S is such that complete(seed(S)) = S, we call it a
root. If S is not a root, we call one of its nonempty prefixes core(S) if it is the longest
prefix such that complete(core(S)) 6= S. Moreover, in that case the smallest element
of S \ core(S) (according to the level order) is called parent index of S (denoted by
parind(S)) and complete(core(S)) is called parent(S).

Note that Lemma 3.2 shows that, for any non-root maximal solution, parent(S) ≺
S. This property will be crucial when proving that the solution graph defined by parent
does not contain any directed cycles.
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3.2 Algorithm

This section will first outline the reverse search algorithm employed by the framework
and will then provide further details on how the graph of the reverse search is gener-
ated.

3.2.1 Reverse search explained

We will now describe the graph that is explored by the reverse search algorithm used by
the framework. While doing this, we use the definition of parent from the Section 3.1,
but the results are valid for any definition of parent that satisfies parent(S) ≺ S for
some order ≺.

Consider the graph R that has all the maximal sets of F as nodes. The arcs of R
are defined as follows: for every maximal non-root solution S, we have an arc from
parent(S) to S.

Thanks to the fact that parent(S) ≺ S and to the properties of orders, we know that
the arcs of R cannot contain any directed cycle. Moreover, as every node has at most
one ingoing edge, there can be no undirected cycle either, as otherwise one node would
have at least two ingoing edges.

Since R contains no cycles, it must be a forest. Let us now consider any maximal
subtree in this forest. Its root has no ingoing edge, so it is, in fact, a maximal solution
with no parent (i.e. a root). Moreover, any other solution in that subtree is reachable
from its root: since a root is the only node in that tree that has no parent, walking back
from S to parent(S) as long as it is possible must eventually reach the root.

Let now S be any maximal solution. We define children(S) to be the family of
maximal sets such that, for any maximal solution Q, we have that the parent of Q is in
S if and only if Q belongs to children(S).

It is now easy to define an algorithm that enumerates all the maximal solutions
in a commutable set system F: simply start the explorations from the root of every
forest, exploring every tree in a depth-first manner. Pseudocode for this algorithm is
shown in Algorithm 1, which is a simple recursive visit on a directed forest. A more
complicated algorithm, that avoids using a recursion stack (thus potentially improving
memory usage), can be found in Algorithm 2. More in detail, this algorithm performs
a depth-first search that jumps from a node to the next without storing anywhere what
the last node was. So, to find the next node we must first check if the current node has
some child that is yet unvisited (this can be obtained by visiting the children in some
deterministic order, thus allowing to skip all the children that have already been visited
just by knowing the last explored node). If that is not the case, then the algorithm has
to climb up in the tree, by executing the parent function.

Note that in some cases the parent of a given maximal solution, or the exact set of
children, may be hard to compute. We suppose that, instead of children, we have a
similar candidates function available, that satisfies candidates(S) ⊇ children(S). In
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Algorithm 1: Reverse search algorithm

for every solution S that is a root do
spawn(S)

end
Function spawn(P)

for S ∈ children(P) do
spawn(S)

end

this case, we may define a graph S that has the same nodes of R but different arcs. In
particular, the arcs of S are defined as follows: for any pair of maximal solutions S,Q,
we have an arc from S toQ if and only ifQ ∈ candidates(S). Clearly R is a subgraph of
S, so an exploration of this graph starting from all the roots will report all the maximal
solutions. The issue of avoiding duplication may be solved by keeping a global set of
all solutions discovered so far. The pseudocode for this approach (that corresponds to
a “traditional” implementation of a depth-first search on a generic graph) can be found
in Algorithm 3 and is the one used to enumerate maximal sets that satisfy connected
hereditary properties in [10].

Finally, note that by using the technique of alternative output, as described in [39],
that is by outputting a solution when going down in the computational tree if the cur-
rent height is even and when going up otherwise, we obtain algorithms whose maxi-
mum delay is given by the cost of running the algorithm for children.

3.2.2 Computing children(S)

We will now explain how to compute the children of a given maximal solution S of a
commutable set system F. As this cannot be done in the generic case in sub-exponential
time (since doing so would give a polynomial total time algorithm for the enumeration
of any commutable set system, in violation of Theorem 2.1), we will use the concept
of restricted problem from Definition 2.15 as a blackbox to aid us in the search of the
children of S. Moreover, when doing so some care will be necessary to avoid generating
the same child multiple times.

The following key fact will give us an the algorithm that generates children(S), as
it gives us a reasonably-sized set of candidates that is assured to contain all the children
of S.

Theorem 3.1. Given a maximal solution C such that parent(C) = S, we have that core(C)
is the prefix ending just before parind(C) of a solution of P(S, parind(C)).

Proof. Let v be parind(C) and let Cv be core(C) ∪ {v}. We will first prove that v 6∈ S.
Suppose by contraddiction v ∈ S. Since we know parent(C) = complete(core(C)),

let y be the first element that is added to core(C) by complete. Clearly, it cannot
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Algorithm 2: Reverse search algorithm without recursion

for every solution S that is a root do
Last← ∅;
loop

Child← ∅;
for C ∈ children(S) that comes after Last do

Child← C;
break;

end
if Child = ∅ then

if S is a root then
break;

end
Last← S;
S← parent(S);

else
Last← ∅;
S← Child;

end
end

end

be v, as otherwise we would have parent(C) = complete(Cv) = C, that contrad-
dicts the definition of parent. By the definition of complete, we immediately know
that (levelcore(C)(y), y) < (levelcore(C)(v), v) and that, as core(C) is a prefix of C,
(levelC(y), y) < (levelC(v), v). Thus, y 6∈ C, as that would mean that v is not the
element immediately after core(C) in C.

By Definition 2.6, we know that, since both Cv and core(C) ∪ {y} belong to F,
core(C) ∪ {v, y} belongs to F too. Thus, y is a viable choice for complete when it is
expanding the set Cv. As any element that is a viable candidate for Cv but not for
core(C) must have a level of levelCv(v) = levelcore(C)(v) + 1, then (levelCv(y), y) is
still the lowest level-value pair among the viable nodes for complete(Cv), and so it
will be chosen as the next element. This implies that complete(Cv) contains y, which
contraddicts y 6∈ C since, by the definition of core, we know complete(Cv) = C. This
proves that v 6∈ S.

As Cv ∈ F, we have that Cv ∈ GvS. So Cv must be contained in a maximal solution
of GvS, i.e. in a solution of P(S, v). We will call this solution R.

We now need to prove that Cv is indeed a prefix of Rwith respect to s, the canonical
seed of C. If C = Cv, then there is nothing to prove, as then R ⊇ C and so R = C (since
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Algorithm 3: Reverse search algorithm with exponential memory

S = ∅;
for every solution S that is a root do

spawn(S)

end
Function spawn(P)

if S ∈ S then
return;

end
add S to S;
for S ∈ children(P) do

spawn(S)

end

C is maximal).
Otherwise, R strictly contains Cv. Let r be the smallest element in R \ Cv and sup-

pose by contraddiction that (levelsR(r), r) < (levelsR(v), v). Then we also have that
(levelsR(r), r) < (levelsCv(v), v), thanks to the fact that the level may not decrease when
taking subsets.

Let us denote by Rp the prefix of R that ends just before r: note that Rp is a prefix of
C. Moreover, by Definition 2.6, we know that Cv∪ {r} is in F too, as both Cv and Rp∪ {r}
are and they both contain Rp.

Let y be the element of C that immediately follows Cv in C. Then, by the definition
of prefix, we know that (levelsC(v), v) < (levelsC(y), y). Since the level of a node does
not change by taking prefixes (as long as it does not become infinite), it follows that
(levelsCv(v), v) < (levelsCv(y), y). Moreover, we also have the following equality:

levelsR(r) = level
s
Rp(r) = level

s
Cv(r)

Putting all this together allows us to conclude that

(levelsCv(r), r) < (levelsCv(y), y)

that imples that the first step of complete(Cv) chooses r, so that complete(Cv) 6= C,
contraddicting the definition of core. This proves that Cv is indeed a prefix of R.

We will denote with R(C) the solution of P(parent(C), parind(C)) (according to
level order) that is obtained by running complete(core(C) ∪ {parind(C)}) using only
candidates from parent(C) ∪ {parind(C)}.

We now know that any child C of S may be found by first chosing the node v that
should be parind(C), then trying all the possible solutions R of P(S, v) as candidates
for R(C), then checking if the prefix with respect to any seed of C ending just before
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v is, in fact, the core of a child. To avoid duplication, we check that the tuple (v, R, s)

choosen to generate the child was indeed the one that can be found from C itself as
(parind(C), R(C), seed(C)). Since we have proven that when that specific tuple is cho-
sen then C is obtained by the previous procedure, this argument shows the correctness
of the algorithm, whose pseudocode can be found in Algorithm 4.

Algorithm 4: Children generation algorithm

Function children(S)
for v ∈ E \ S do

for R solution of P(S, v) different from S do
for s possible seed of R do

Cv← the prefix of Rwith respect to s ending with v;
C← complete(Cv);
if parind(C) = v and parent(C) = S and R = R(C) and
seed(C) = s then

yield C;
end

end
end

end

Note that some speed-ups may be obtained by choosing v from a smaller set, as long
as any v such that {v} is not the only non-trivial solution to P(S, v) belongs to that set.
This is because complete({v}) is either a root or does not satisfy seed(complete({v})) =
v.

3.2.3 An algorithm that does not require the restricted problem

In Subsection 3.2.2, the restricted problem is only used as a tool to find the cores of the
children of the current node. Another way to reach the same objective is trying all the
possible subsets of S∪ {v}. This algorithm would be slower in the majority of cases, but
requires no knowledge of the problem to be applied. Moreover, with slight modifica-
tions to the definition of level it can be used on set systems that are not commutable but
only strongly accessible.

More precisely, we may define the level of a node as follows:

• If v 6∈ S, then level(v) = |S|.

• If v ∈ S, then run complete({s}) while considering only candidates from S. Let S ′

be the solution such that the next iteration of complete adds v. Then level(v) =
|S ′|.
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When replacing Definition 3.2 with this one, both complete and parent are still well-
defined, and the same proof for Lemma 3.2 still holds. We thus obtain that the algo-
rithms of Subsection 3.2.1 may be used to enumerate any strongly accessible set system.

3.2.4 Analysis

The running time of Algorithm 4 critically depends on the cost of solving P. The fol-
lowing lemma will tie together α and the number of solutions of P.

Lemma 3.3. The number of solutions of P(S, v) is at most (|S|+ 1)α.

Proof. Let us fix a node s of S ∪ {v} and consider all the solutions of P(S, v) that have s
as a seed. We will prove that there are at most α such solutions: as s may be chosen in
|S|+ 1 ways, this proves the thesis.

Indeed, let us suppose by contraddiction that there are more that α solutions of
P(S, v) that contain s. As any solution of P(S, v) is contained in a maximal solution
of F, by the pidgeonhole principle, at least two such solutions (say Q and R) must be
contained in the same maximal solution B of F. From Definition 2.6 then follows that,
sinceQ and R belong to F, are contained in an element of F and both contain {s}, another
viable solution, Q ∪ R ∈ F too. But this contraddicts the maximality of Q and R in GvS,
so the thesis is proven.

This fact, combined with the algorithm explained above, gives us the following
theorem:

Theorem 3.2. Let F be a commutable set system over a set U. If the restricted problem can be
solved in polynomial time (resp. polynomial total time), then the maximal solutions of F may be
enumerated with polynomial delay (resp. in polynomial total time).

Note that algorithms obtained with this framework have a slightly higher compu-
tational cost with respect to the corresponding ones given by the framework in [10].
However, algorithms obtained with our framework have an huge advantage in a par-
allelized or distributed settings, as they do not require a centralized set that stores all
the maximal solutions generated so far. Such a set would create a huge bottleneck, as it
would be the source of a lot of inherently sequential work, thus limiting the maximum
speed-up that can be obtained. In contrast, our framework requires almost no coordi-
nation, with the exception of the work required to split the forest in roughly equal-sized
chunks to be assigned to each worker.

Let us now consider the variant of the algorithm that does an exaustive search of the
possible cores of the children. That algorithm gives us a delay bounded by O(P(n)2q),
which is the square of the lower bound given in Corollary 2.1.

This bound gives us the following corollary:
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Corollary 3.1. Let F be a commutable set system over a set U such that any element S ∈ F

has size at most q = O(log(n)). Then all the maximal solutions of F may be enumerated with
polynomial delay.

Note that the trivial algorithm (try all the sets with size up to q) does not guarantee
this, as its running time is O(nq) = O(nc logn), that is super-polynomial.

Finally, we will spend a couple words on (possible) implementations of complete
and parent and their runtime costs. Suppose that determining the level of a node
takes L(q) time, and that we know that the viable elements to be added belong to a
set A of size at most A that can be listed in O(A) time. Then, complete may be easily
implemented by scanning A, finding the level of each element, adding to the current
solution the one with the lowest level-value pair and repeating. The total cost of each
of these steps is O(AL(q)), and there is a total of O(q) steps, so the total running time
of complete is O(qAL(q)).

As for parent, we can proceed by removing an element v from the current solution
and executing one step of complete. If this step adds v back, then vwas not the parind
and we need to remove another element, otherwise what we have left is the core of the
solution and we just need to end the execution of complete. This algorithm has the
same running time as the one above, i.e. O(qAL(q)).

We may summarize these results with the following lemma.

Lemma 3.4. If we may find the level of a node in L(q) time, and we know that the elements
that may be added to a partial solution can be iterated on using at most O(A) total time, then
both complete and parentmay be implemented to run inO(qAL(q)) time, while using only
O(q) memory.



Chapter 4

Applications of the framework

This chapter will show some applications of the algorithmic framework of Section 3.2
to problems that were presented in Section 2.2. In particular, the main focus will be on
solving the restricted problem, as in many cases this is not trivial.

4.1 Cliques and (connected) k-plexes

Applying the framework to cliques is quite straightforward, since the restricted prob-
lem is very simple: if C is a clique, then C ∪ {v} has C and C ∩ N(v) ∪ {v} as the only
maximal cliques. As the restricted problem may be solved in polynomial time, the
maximal clique problem may be solved with polynomial delay.

This is a well-known result, as seen for example in [13].
Solving the restricted problem for maximal k-plexes is not so simple: in fact, it may

have an exponential number of solution. In [5], the authors find a polynomial-delay
algorithm (assuming k to be a constant) to generate all the solutions of the restricted
problem.

Applying this solution of the restricted problem to our framework gives a polyno-
mial total time algorithm to find all the maximal k-plexes in a graph, a weaker result
than the one in [5]. Because the delay between two solutions of the restricted problem
is not very useful in our framework, we will give an upper bound on the number of
solutions of the restricted problem and an algorithm to compute them.

Lemma 4.1. Assuming k to be a constant, if S is a k-plex and v is a node in V \ S, then there
are at most 1 + f(k)|S|k−1 maximal k-plexes in S ∪ {v}, with f(k) = (k− 1)2k for k > 1 and
f(1) = 1. Moreover, they can be computed in O(kf(k)|S|k) time using only O(kq) memory.

Proof. During the proof, we will use the following upper bound on the sum of certain
binomial coefficients, that can easily be derived from the fact that

(
n
i

)
6 ni:
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k∑
i=0

(
n

i

)
6 knk ∀n > 0

S is clearly a maximal k-plex in S∪{v}. From now on, we will only consider maximal
k-plexes that include v. Any of those maximal k-plexes may contain up to k−1 elements
of S that are not neighbours of v. So, we can partition the maximal k-plexes that contain
v according to the set Ñ of non-neighbours of v that they contain.

Consider now K(Ñ) = {v} ∪ Ñ ∪ (N(v) ∩ S). If it is not a k-plex, then it cannot
be because of any element in N(v): indeed, the number of non-neighbours that these
elements have in K(Ñ) is at most the number of non-neighbours that they have in S,
and so it is at most k. Moreover, it cannot be due to v either, as we know |Ñ| 6 k− 1.

So any element x that breaks the k-plex constraint must be in Ñ. Call Ñb the set of
such xs. The constraint may only be broken by having k+ 1 non-neighbours, as v is the
only element in K(Ñ) that was not in S. Since we are only interested in k-plexes that
contain v, the only way to fix this issue for any x ∈ Ñb is by removing from K(Ñ) some
element that belongs to B(x) = Ñ(v) ∩ S \ N(x). As we need to do this for all the x in
Ñb, we need to find some set X such that:

• X ⊆
⋃
x∈Ñb B(x),

• X ∪ B(x) 6= ∅ for any x in Ñb,

• X is minimal among all the sets that satisfy the first two properties, as otherwise
the resulting k-plex would not be maximal.

We will now prove that any minimal X satisfies |X| 6 |Ñb| 6 k − 1. Let f(y) be the
function that maps any element of X into the set of B(x) such that B(x) ∩ X = {y}. We
will now prove that if |X| > |Nb| then there is an y for which f(y) = ∅. Indeed, if it were
not the case, we would have that, since the various f(y) are disjoint, |

⋃
y∈X f(y)| > |Ñb|.

But this is a contraddiction, as the number of B(x) is smaller than |Ñb| because of their
definition. So there is an y such that f(y) = ∅. Removing such an ywould not alter the
number of sets covered by X, and so we have proven that X is not minimal.

So, we have that Xmust be a set of size at most |Ñb| contained in a set of size at most
|Nb|× (k− 1) 6 (k− 1)2.

Taking these results together, we have that the number of maximal k-plexes in S∪{v}
containing v is at most

k−1∑
i=0

(
|S|

i

) k−1∑
i=0

(
(k− 1)2

i

)
6 |S|k−1(k− 1)2k

Finally, since these sets can be easily enumerated in O(|S|) time per set, it is enough
to show that we may check if they are a k-plex and their maximality in O(k|S|) time.
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Indeed, given a preprocessing time of O(|S|2) (that reduces to O(|S|) if k = 1), due to
the computation of the set of non-neighbours for every node in S, we may check if a set
is a k-plex in O(k|S|) time; moreover we can check if extending a given k-plex with one
extra node still gives a k-plex in O(k) time per node (since we only need to check that
node and its neighbours). This completes the proof.

Unfortunately, there is no easy bound on the size of the candidate set for k-plexes
(either for complete or for the choice of v in Algorithm 4), so the resulting enumeration
algorithm still has a time complexity ofO(n2qk+2f(k)α), which is obtained as the n (for
the choice of v) times the number of solutions of the restricted problem O(f(k)qk−1)

times q (the number of choices for a seed in every solution) times the cost of running
complete or parent, which according to Lemma 3.4 is given by the cost of checking
the level of a node (O(q) by updating it from one iteration to the next) times q times
A = O(n). Thus running complete takesO(nq2). Multiplying all these values together
gives the cost of computing children as O(n2qk+2f(k)). As this is basically the only
cost in the reverse search, we obtain a delay of O(n2qk+2f(k)) and thus the given total
time.

A more interesting problem is the one of enumerating connected k-plexes. This
problem was studied in [5] too, where a polynomial-delay algorithm for the restricted
problem was given. The resulting algorithm using their framework takes incremental
polynomial time but uses additional exponential memory. With our framework, we
obtain a polynomial-delay algorithm (for fixed k) that only takes O(kq) memory:

Theorem 4.1. All the connected k-plexes in a graphG can be enumerated withO(qk+4∆2f(k))
delay, using only O(kq) extra memory (other than the memory used to store G).

The theorem holds because we can restrict our choice of candidates to nodes that
only have at least one neighbour in the current solution, thus replacing all the instances
of n in the running time of the enumeration of k-plexes with q∆. Moreover, we may
re-use Lemma 4.1 with the following simple observation: any connected k-plex must
be contained in a “normal” k-plex, and may be obtained from it by extracting the con-
nected component containing v. Moreover, duplicates may be avoided by choosing an
easily-computable canonical k-plex that should generate a given maximal connected k-
plex (for example, the one obtained by adding iteratively adding the smallest element
in the input to the restricted problem that would keep the current set a k-plex). So,
when we generate a connected k-plex C from a given k-plex K, we check if K is the
canonical k-plex associated to C and, if it is not, we discard C, as we know that it will
be (or has already been) generated when K is the canonical k-plex.
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4.2 Black-connected cliques

In the case of black-connected cliques, the restricted problem P(S, v) is easy to solve:
it is enough to find the only maximal clique in S ∪ {v} that is not S and to remove any
vertex from it that is not in the same black-connected component of v. This takes O(q)
time and gives exactly one solution.

Let us now consider complete and parent. We will denote by ∆b the maximum
“black degree” of a node in G. To execute a step of complete, it is enough to consider
the elements of G that are black neighbours of a node in the current solution. There are
at most q∆b such elements, and it is easy to check if one such element may be added to
the solution in O(q) time. Thanks to Lemma 3.4, the execution of both complete and
parent takes at most O(q3∆b) time.

Moreover, note that in Algorithm 4 we only need to consider nodes that are black
neighbours of a node in the current solution as a possible v, as otherwise the only non-
trivial solution of the restricted problem would be {v} itself. With a calculation similar
to the one that gave us the bound for connected k-plexes, this gives the following result:

Theorem 4.2. All the maximal black-connected cliques in a graph G may be enumerated with
O(q5∆2b) delay, using only O(q) extra memory (other than the memory used to store G).

4.3 Connected bipartite (induced) subgraphs

A bipartite subgraph can be equivalently seen as a graph that is two-colorable, or as a
graph that contains no cycle with odd length.

We will first consider non-induced subgraphs. In this case, when solving the re-
stricted problem we have a bipartite graph with one extra edge e that connects two
nodes of the same color, as otherwise the solution that generates the restricted problem
would not be maximal. Any non-trivial subset of the edges in the restricted problem
that gives a solution must then be missing enough edges to disconnect these two nodes
in the original bipartite graph, i.e. the set of removed edge must be a cut in the bipartite
graph. Moreover, since we are interested in maximal solutions, the cut must be mini-
mal. Note that, since minimal cuts divide the graph into two connected components,
and that adding e to the graph connects these two components, the connectivity con-
straint is not an issue. Since enumeration of minimal cuts can be done in polynomial
total time, as in [31], the restricted problem may be solved in polynomial total time.

For induced subgraphs, the extra node v will have some neighbours of one color
and some of the other. We will call these two sets of neighbours B and W respectively.
As before, we need to break the odd cycles involving v. To do so, we need to remove
one or more nodes from the original bipartite graph in such a way that either

• B becomes empty, or
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• W becomes empty, or

• there is no path from any node in B to any node inW

This can be done by enumerating the minimal vertex-cuts between two fake nodes
b and w, where b (w) have all B (W) as neighbours (respectively). As before, removing
minimal vertex-cuts leaves the graph split into two connected components, and since
v is the node obtained by identifying b with w, we have that the resulting graph is
connected. Moreover, minimal vertex-cuts can be enumerated in polynomial total time,
as in [37].

Putting it all together, we obtain the following result.

Theorem 4.3. All the maximal connected bipartite (induced) subgraphs in G may be enumer-
ated in polynomial total time, using only polynomial space.

4.4 Feedback vertex (arc) sets

As with bipartite subgraphs, the restricted problem requires one to break all the cycles
that are formed in a graph with no cycles by adding a single node or a single arc. Thus,
it may be solved by enumerating maximal cuts or vertex-cuts in the original graph. As
vertex cuts in undirected graphs may be enumerated in polynomial total time (see [37]),
and edge cuts may be enumerated in polynomial total time both in undirected and
directed graphs (see [31]), we have the following result.

Theorem 4.4. All the minimal feedback vertex sets in an undirected graph may be enumerated
in polynomial total time, using only polynomial space. Moreover, all the minimal feedback arc
sets in both directed and undirected graphs may be enumerated in polynomial total time, using
only polynomial space.
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Chapter 5

Conclusions

This thesis analyzed known results regarding the enumeration of set systems, dis-
cussing various classes of set systems (independence systems, commutable set systems,
(strongly) accessible set systems).

Despite the hardness result given in Theorem 2.1, many techniques have succeded
in producing efficient algorithms, in practice if not in theory (for example [16]). In
particular, we focused on binary partition, which was presented in Section 2.4, and
on reverse search, initially presented in Section 2.4 and presented more in-depth in
Section 3.2.1.

We then explained our new algorithmic framework, based on the technique of re-
verse search, that achieves under suitable conditions polynomial total time enumera-
tion of commutable set systems while using a limited amount of memory. More pre-
cisely, our framework allows us to transform, in a space-efficient way, an algorithm for
the enumeration of maximal solutions to a restricted problem that consists in enumer-
ating the maximal solutions in a set obtained by adding an extra element to a given
maximal solution.

The runtime performance of this algorithm influences heavily the running time of
the algorithm obtained by applying our framework: a polynomial algorithm for the
restricted problem gives a polynomial delay for the general enumeration, while a poly-
nomial total time algorithm for the restricted problem translates to a polynomial total
time algorithm for the general problem (this last implication clearly also holds in the
other direction).

Thus, we studied in Chapter 4 how to solve the restricted problem in various com-
mutable set systems. This analysis is by no means exhaustive, and a possible direction
for future work would be to solve the restricted problem for more set systems, or even
to find some general techniques related to restricted problems.

Other interesting extensions to this work could be related to the performance of the
algorithm obtained. This could be done both on a theoretical aspect, by studying fur-
ther properties of these families in order to lower the time complexity of the algorithm,

35
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and on a practical aspect, as the algorithm should be easy to implement in a distributed
manner. Indeed, we expect that the ability to easily implement a distributed version of
the algorithm will make the biggest difference in practice between this framework and
previous work.
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Appendix A

Code for the framework

This appendix contains a simple implementation of the enumeration framework de-
scribed in this thesis. It contains the generic implementations of the functions described
in Chapter 3, plus some specific implementations of the functions needed to apply the
framework to black-connected cliques in graphs obtained by computing the product of
two connected graphs.

The implementation provided here is not as memory-efficient as the one described
in the rest of the work, but improves a bit the running time of the algorithm. More in
detail, for black-connected cliques, we obtain an algorithm that has a delay ofO(q4∆2b)
while using O(q∆b) memory per recursive node. For simpicity, only the recursive ver-
sion was implemented.

A.1 Generic algorithm and graph data structures

A.1.1 framework.hpp

This file contains the implementation of the functions defined in Chapter 3.

1 #ifndef FRAMEWORK_HPP
2 #define FRAMEWORK_HPP
3 #include <vector>
4 #include <cstdint>
5 #include <functional>
6 #include <algorithm>
7 #include <memory>
8 #include <set>
9 #include <unordered_map>

10 #include <unordered_set>
11

12 template <typename univ_t>
13 class CommutableSystem {
14 public:
15 const univ_t& e;

41
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16

17 CommutableSystem(const univ_t& e): e(e) {}
18

19 typedef typename univ_t::elem_t elem_t;
20 /**
21 * Checks if a given subset is a solution.
22 */
23 virtual bool is_good(const std::vector<elem_t>& s) = 0;
24

25 /**
26 * Solves the restricted problem
27 */
28 virtual void restricted_problem(
29 const std::vector<elem_t>& s,
30 elem_t v,
31 const std::function<bool(std::vector<elem_t>)>& cb
32 ) = 0;
33

34 /**
35 * Reports a solution
36 */
37 virtual void report_solution(const std::vector<elem_t>& s) = 0;
38

39

40 /**
41 * Checks if we can add a given element to a solution
42 */
43 virtual bool can_add(const std::vector<elem_t>& s, elem_t v) {
44 auto cnd = s;
45 cnd.push_back(v);
46 return is_good(cnd);
47 }
48

49 /**
50 * Returns true if the resticted problem may have at least two solutions.
51 */
52 virtual bool restr_multiple() {
53 return true;
54 }
55

56 /**
57 * Checks if the given element can be a valid seed of a solution,
58 * or a root if NULL is specified.
59 */
60 virtual bool is_seed(elem_t v, const std::unordered_set<elem_t>* s) {
61 return is_good({v});
62 }
63

64 /**
65 * Iterates over all the possible new elements that could be added
66 * because of a single new element in a solution.
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67 */
68 virtual void complete_cands(
69 const std::vector<elem_t>* ground_set,
70 elem_t new_elem,
71 const std::function<bool(elem_t)>& cb
72 ) {
73 if (!ground_set) {
74 for (elem_t i=0; i<e.size(); i++) {
75 if (cb(i))
76 break;
77 }
78 } else {
79 for (auto i: *ground_set) {
80 if (cb(i))
81 break;
82 }
83 }
84 }
85

86 /**
87 * Iterates over all the possible new elements that could be used
88 * for the restricted problem
89 */
90 virtual void restricted_cands(
91 const std::vector<elem_t>& s,
92 const std::vector<int32_t>& level,
93 const std::function<bool(elem_t)>& cb
94 ) {
95 auto ss = s;
96 std::sort(ss.begin(), ss.end());
97 for (elem_t i=0; i<e.size(); i++) {
98 if (std::binary_search(ss.begin(), ss.end(), i)) continue;
99 if (cb(i))

100 break;
101 }
102 }
103

104 /**
105 * Checks if complete of a given element is a root.
106 */
107 virtual bool get_root(
108 elem_t v,
109 std::vector<elem_t>& s,
110 std::vector<int32_t>& level
111 ) {
112 if (!is_seed(v, nullptr)) return false;
113 s.clear();
114 level.clear();
115 s.push_back(v);
116 level.push_back(0);
117 auto ret = !complete(s, level, true);
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118 return ret;
119 }
120

121 /**
122 * Update candidate list when a new element is added to the solution.
123 */
124 virtual void update_step(
125 std::vector<elem_t>& s,
126 elem_t v,
127 int32_t level,
128 std::set<std::pair<int32_t, elem_t>>& candidates,
129 std::unordered_map<elem_t, int32_t>& cand_level,
130 const std::vector<elem_t>* ground_set
131 ) {
132 complete_cands(ground_set, v, [&](elem_t cnd) {
133 if (!can_add(s, cnd)) return false;
134 if (cand_level.count(cnd)) return false;
135 cand_level[cnd] = level+1;
136 candidates.emplace(level+1, cnd);
137 return false;
138 });
139 }
140

141 /**
142 * Extracts the next valid cand from candidates
143 */
144 virtual std::pair<elem_t, int32_t> next_cand(
145 const std::vector<elem_t>& s,
146 std::set<std::pair<int32_t, elem_t>>& candidates
147 ) {
148 while (!candidates.empty()) {
149 auto p = *candidates.begin();
150 candidates.erase(candidates.begin());
151 if (!can_add(s, p.second)) continue;
152 return {p.second, p.first};
153 }
154 return {e.size(), -1};
155 }
156

157 /**
158 * Recomputes the order and the level of the elements in s with another

seed.↪→

159 */
160 virtual void resort(
161 std::vector<elem_t>& s,
162 std::vector<int32_t>& level,
163 elem_t seed
164 ) {
165 std::vector<elem_t> sn{seed};
166 std::vector<int32_t> ln{0};
167 complete_inside(sn, ln, s, false);
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168 s = sn;
169 level = ln;
170 }
171

172 /**
173 * Complete function. Returns true if there was a seed change, false

otherwise↪→

174 */
175 virtual bool complete(
176 std::vector<elem_t>& s,
177 std::vector<int32_t>& level,
178 bool stop_on_seed_change = false
179 ) {
180 if (s.empty()) throw std::runtime_error("??");
181 std::set<std::pair<int32_t, elem_t>> candidates;
182 std::unordered_map<elem_t, int32_t> cand_level;
183 for (uint32_t i=0; i<s.size(); i++) {
184 update_step(s, s[i], level[i], candidates, cand_level, nullptr);
185 }
186 bool seed_change = false;
187 while (true) {
188 elem_t n;
189 int32_t l;
190 std::tie(n, l) = next_cand(s, candidates);
191 if (n == e.size()) break;
192 unsigned pos = s.size();
193 while (pos > 0 && (l < level[pos-1] || (l==level[pos-1] && n <

s[pos-1]))) pos--;↪→

194 s.insert(s.begin()+pos, n);
195 level.insert(level.begin()+pos, l);
196 if (n < s[0]) { // Seed change
197 if (stop_on_seed_change) return true;
198 seed_change = true;
199 resort(s, level, n);
200 cand_level.clear();
201 candidates.clear();
202 for (uint32_t i=0; i<s.size(); i++) {
203 update_step(s, s[i], level[i], candidates, cand_level,

nullptr);↪→

204 }
205 } else {
206 update_step(s, n, l, candidates, cand_level, nullptr);
207 }
208 }
209 return seed_change;
210 }
211

212 /**
213 * Runs complete inside a given set.
214 */
215 virtual void complete_inside(
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216 std::vector<elem_t>& s,
217 std::vector<int32_t>& level,
218 const std::vector<elem_t>& inside,
219 bool change_seed = true
220 ) {
221 if (s.empty()) throw std::runtime_error("??");
222 std::set<std::pair<int32_t, elem_t>> candidates;
223 std::unordered_map<elem_t, int32_t> cand_level;
224 for (uint32_t i=0; i<s.size(); i++) {
225 update_step(s, s[i], level[i], candidates, cand_level, &inside);
226 }
227 while (true) {
228 elem_t n;
229 int32_t l;
230 std::tie(n, l) = next_cand(s, candidates);
231 if (n == e.size()) break;
232 unsigned pos = s.size();
233 while (pos > 0 && (l < level[pos-1] || (l==level[pos-1] && n <

s[pos-1]))) pos--;↪→

234 s.insert(s.begin()+pos, n);
235 level.insert(level.begin()+pos, l);
236 if (n < s[0] && change_seed) { // Seed change
237 resort(s, level, n);
238 cand_level.clear();
239 candidates.clear();
240 for (uint32_t i=0; i<s.size(); i++) {
241 update_step(s, s[i], level[i], candidates, cand_level,

&inside);↪→

242 }
243 } else {
244 update_step(s, n, l, candidates, cand_level, &inside);
245 }
246 }
247 }
248

249 /**
250 * Computes the prefix of the solution with a given seed and ending with

v↪→

251 */
252 virtual void get_prefix(
253 std::vector<elem_t>& s,
254 std::vector<int32_t>& level,
255 elem_t seed,
256 elem_t v
257 ) {
258 resort(s, level, seed);
259 std::size_t i;
260 for (i=0; i<s.size(); i++)
261 if (s[i] == v)
262 break;
263 s.resize(i+1);
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264 level.resize(i+1);
265 }
266

267 /**
268 * Parent function, returns the parent index.
269 */
270 virtual elem_t parent(
271 const std::vector<elem_t>& s,
272 const std::vector<int32_t>& level,
273 std::vector<elem_t>& parent,
274 std::vector<int32_t>& parent_level
275 ) {
276 for (unsigned parind_pos = s.size()-1; parind_pos > 0; parind_pos--)

{↪→

277 parent = s;
278 parent_level = level;
279 parent.resize(parind_pos);
280 parent_level.resize(parind_pos);
281 complete(parent, parent_level);
282 if (parent != s) {
283 return s[parind_pos];
284 }
285 }
286 parent.clear();
287 return e.size();
288 }
289

290 /**
291 * Computes the children of a given solution. Returns true if we stopped

generating↪→

292 * them because the callback returned true.
293 */
294 virtual bool children(
295 const std::vector<elem_t>& s,
296 const std::vector<int32_t>& level,
297 const std::function<bool(const std::vector<elem_t>&, const

std::vector<int32_t>&)>& cb↪→

298 ) {
299 bool done = false;
300 restricted_cands(s, level, [&] (elem_t cand) {
301 restricted_problem(s, cand, [&](const std::vector<elem_t>& sol) {
302 std::unordered_set<elem_t> sol_set(sol.begin(), sol.end());
303 for (auto seed: sol) {
304 if (!is_seed(seed, &sol_set)) continue;
305 if (cand <= seed) continue;
306 std::vector<elem_t> core = sol;
307 std::vector<int32_t> clvl = level;
308 get_prefix(core, clvl, seed, cand);
309 std::vector<elem_t> child = core;
310 std::vector<int32_t> lvl = clvl;
311 // There was a seed change
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312 if (complete(child, lvl, true)) continue;
313 std::vector<elem_t> p;
314 std::vector<int32_t> plvl;
315 elem_t parind = parent(child, lvl, p, plvl);
316 // Not the parent of this child
317 if (p != s) continue;
318 // Wrong parent index
319 if (parind != cand) continue;
320 if (restr_multiple()) {
321 p.push_back(parind);
322 complete_inside(core, clvl, p);
323 // Wrong restricted problem solution
324 if (core != sol) continue;
325 }
326 if (cb(child, lvl)) {
327 done = true;
328 break;
329 }
330 }
331 return done;
332 });
333 return done;
334 });
335 return done;
336 }
337 };
338

339 template<typename CS>
340 class ReverseSearch {
341 protected:
342 std::unique_ptr<CS> cs;
343 typedef typename CS::elem_t elem_t;
344 virtual void handle_solution(const std::vector<elem_t>& s, const

std::vector<int32_t>& level) {↪→

345 cs->report_solution(s);
346 cs->children(s, level, [this](const std::vector<elem_t>& sn, const

std::vector<int32_t>& leveln) {↪→

347 handle_solution(sn, leveln);
348 return false;
349 });
350 }
351 public:
352 template <typename... Args>
353 ReverseSearch(const Args&... args): cs(std::make_unique<CS>(args...)) {}
354

355 void run() {
356 std::vector<elem_t> s, p;
357 std::vector<int32_t> level, pl;
358 for (elem_t i=0; i<cs->e.size(); i++) {
359 if (cs->get_root(i, s, level)) {
360 handle_solution(s, level);
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361 }
362 }
363 }
364 };
365

366 #endif

A.1.2 graph.hpp

This file contains the implementation of the graph data structures, including the prod-
uct graph as defined in [12]. This product graph is the graph with colored edges in
which black connected cliques are enumerated.

1 #ifndef GRAPH_HPP
2 #define GRAPH_HPP
3 #include <stdint.h>
4 #include <assert.h>
5 #include "dynarray.hpp"
6 #include "cuckoo.hpp"
7 #include "binary_search.hpp"
8 #include "common.hpp"
9

10 #include <vector>
11 #include <algorithm>
12 #include <unordered_map>
13 #include <functional>
14

15 template <typename node_t_ = uint32_t, bool lowmem = false>
16 class graph_t {
17 public:
18 typedef node_t_ node_t;
19 typedef node_t elem_t;
20 private:
21 node_t N_;
22 dynarray<binary_search_t<node_t>> edges;
23 // Structures for the "fast" version
24 dynarray<cuckoo_hash_set<node_t>> edges_fast;
25 dynarray<typename binary_search_t<node_t>::iterator> fwd_iter;
26

27 protected:
28 static int64_t nextInt(FILE* in) {
29 int64_t n = 0;
30 int64_t ch = getc_unlocked(in);
31 while (ch != EOF && (ch < '0' || ch > '9')) ch = getc_unlocked(in);
32 if (ch == EOF) return EOF;
33 while (ch >= '0' && ch <= '9') {
34 n = 10*n + ch - '0';
35 ch = getc_unlocked(in);
36 }
37 return n;
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38 }
39 static void read_edges(FILE* in, bool directed,

std::vector<std::vector<node_t>>& graph) {↪→

40 while(true) {
41 int a = nextInt(in);
42 int b = nextInt(in);
43 if (a == EOF || b == EOF) return;
44 if(a == b) continue;
45 graph[a].push_back(b);
46 if (!directed) graph[b].push_back(a);
47 }
48 }
49 public:
50 graph_t(node_t N, const std::vector<std::vector<node_t>>& edg, bool

sorted = false): N_(N) {↪→

51 edges.resize(N);
52 for (node_t i=0; i<N; i++) {
53 edges[i].init(edg[i]);
54 if (!sorted) std::sort(edges[i].data().begin(),

edges[i].data().end());↪→

55 }
56 if (!lowmem) {
57 edges_fast.resize(N);
58 fwd_iter.resize(N);
59 for (node_t i=0; i<N; i++) {
60 for (auto x: edg[i])
61 edges_fast[i].insert(x);
62 fwd_iter[i] = edges[i].upper_bound(i);
63 }
64 }
65 }
66

67 static graph_t read_oly(FILE* in = stdin, bool directed = false) {
68 node_t N = nextInt(in);
69 nextInt(in);
70 std::vector<std::vector<node_t>> graph(N);
71 read_edges(in, directed, graph);
72 for (node_t i=0; i<N; i++) {
73 sort(graph[i].begin(), graph[i].end());
74 graph[i].erase(unique(graph[i].begin(), graph[i].end()),

graph[i].end());↪→

75 }
76 return {N, graph, true};
77 }
78

79 static graph_t read_nde(FILE* in = stdin, bool directed = false) {
80 node_t N = nextInt(in);
81 std::vector<std::vector<node_t>> graph(N);
82 for(node_t i=0; i<N; i++) {
83 int a = nextInt(in);
84 int b = nextInt(in);
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85 graph[a].reserve(b);
86 }
87 read_edges(in, directed, graph);
88 for (node_t i=0; i<N; i++) {
89 sort(graph[i].begin(), graph[i].end());
90 graph[i].erase(unique(graph[i].begin(), graph[i].end()),

graph[i].end());↪→

91 }
92 return {N, graph, true};
93 }
94

95 /**
96 * Node new_order[i] will go in position i.
97 */
98 template <typename G>
99 static graph_t permute(G g, const std::vector<node_t>& new_order) {

100 assert(new_order.size() == (size_t) g.size());
101 std::vector<node_t> new_pos(g.size(), -1);
102 for (node_t i=0; i<g.size(); i++) new_pos[new_order[i]] = i;
103 std::vector<std::vector<node_t>> new_edges(g.size());
104 for (node_t i=0; i<g.size(); i++) {
105 for (auto x: g.neighs(i)) {
106 new_edges[new_pos[i]].push_back(new_pos[x]);
107 }
108 }
109 return {g.size(), new_edges};
110 }
111

112 node_t size() const {
113 return N_;
114 }
115

116 node_t degree(node_t i) const {
117 return edges[i].size();
118 }
119

120 const binary_search_t<node_t>& neighs(node_t i) const {
121 return edges[i];
122 }
123

124 class fwd_neighs_t {
125 node_t n;
126 const graph_t* g;
127 public:
128 fwd_neighs_t(const graph_t* g, node_t n): g(g), n(n) {}
129 typename binary_search_t<node_t>::iterator begin() const {
130 if (lowmem) return g->edges[n].upper_bound(n);
131 else return g->fwd_iter[n];
132 }
133 typename binary_search_t<node_t>::iterator end() const {
134 return g->edges[n].end();
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135 }
136 node_t size() const {
137 return end() - begin();
138 }
139 };
140

141 friend class fwd_neighs_t;
142

143 const fwd_neighs_t fwd_neighs(node_t n) const {
144 return {this, n};
145 }
146

147 node_t fwd_degree(node_t n) const {
148 return fwd_neighs(n).size();
149 }
150

151 bool are_neighs(node_t a, node_t b) const {
152 if (lowmem) return edges[a].count(b);
153 else return edges_fast[a].count(b);
154 }
155 };
156

157 template <typename label_t_ = uint32_t, typename node_t_ = uint32_t, bool
lowmem = false>↪→

158 class labeled_graph_t: public graph_t<node_t_, lowmem> {
159 std::vector<label_t_> labels;
160 using ugraph_t = graph_t<node_t_, lowmem>;
161 public:
162 typedef label_t_ label_t;
163 typedef typename ugraph_t::node_t node_t;
164 typedef typename ugraph_t::elem_t elem_t;
165

166 labeled_graph_t(
167 node_t N, std::vector<label_t> labels,
168 const std::vector<std::vector<node_t>>& edg,
169 bool sorted = false
170 ): ugraph_t(N, edg, sorted), labels(labels) {}
171

172 static labeled_graph_t read_oly(FILE* in = stdin, bool directed = false)
{↪→

173 node_t N = ugraph_t::nextInt(in);
174 ugraph_t::nextInt(in);
175 std::vector<std::vector<node_t>> graph(N);
176 std::vector<label_t> labels(N);
177 for (node_t i=0; i<N; i++) {
178 labels[i] = ugraph_t::nextInt(in);
179 }
180 ugraph_t::read_edges(in, directed, graph);
181 for (node_t i=0; i<N; i++) {
182 sort(graph[i].begin(), graph[i].end());
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183 graph[i].erase(unique(graph[i].begin(), graph[i].end()),
graph[i].end());↪→

184 }
185 return {N, labels, graph, true};
186 }
187

188 label_t get_label(node_t node) const {
189 return labels[node];
190 }
191 };
192

193 template <typename label_t_ = uint32_t, typename node_t_ = uint32_t, bool
lowmem = false>↪→

194 class product_graph_t {
195 typedef label_t_ label_t;
196 using ugraph_t = graph_t<node_t_, lowmem>;
197 using lgraph_t = labeled_graph_t<label_t, node_t_, lowmem>;
198 lgraph_t g1;
199 lgraph_t g2;
200 std::vector<std::pair<node_t_, node_t_>> nds;
201 std::unordered_map<std::pair<node_t_, node_t_>, node_t_, pair_hash> rmp;
202 void gen_node_list() {
203 std::unordered_map<label_t, std::vector<node_t_>> g2_nodes;
204 for (node_t_ i=0; i<g2.size(); i++)
205 g2_nodes[g2.get_label(i)].push_back(i);
206 for (node_t_ i=0; i<g1.size(); i++) {
207 for (auto second: g2_nodes[g1.get_label(i)]) {
208 nds.emplace_back(i, second);
209 rmp[nds.back()] = nds.size()-1;
210 }
211 }
212 }
213 public:
214 typedef typename ugraph_t::node_t node_t;
215 typedef typename ugraph_t::elem_t elem_t;
216 product_graph_t(lgraph_t&& g1, lgraph_t&& g2): g1(g1), g2(g2) {
217 gen_node_list();
218 }
219 product_graph_t(const lgraph_t& g1, const lgraph_t& g2): g1(g1), g2(g2) {
220 gen_node_list();
221 }
222

223 static product_graph_t read_oly(FILE* in1, FILE* in2, bool directed =
false) {↪→

224 return {lgraph_t::read_oly(in1, directed), lgraph_t::read_oly(in2,
directed)};↪→

225 }
226

227 node_t size() const {
228 return nds.size();
229 }
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230

231 std::pair<node_t, node_t> to_pair(node_t node) const {
232 return nds[node];
233 }
234

235 void black_neighs(node_t node, const std::function<bool(node_t)>& cb)
const {↪→

236 for (auto a: g1.neighs(nds[node].first)) {
237 for (auto b: g2.neighs(nds[node].second)) {
238 auto p = std::make_pair(a, b);
239 if (rmp.count(p) == 0) continue;
240 if (cb(rmp.at(p))) break;
241 }
242 }
243 }
244

245 bool are_neighs(node_t a, node_t b) const {
246 return nds[a].first != nds[b].first && nds[a].second != nds[b].second
247 && g1.are_neighs(nds[a].first, nds[b].first) ==
248 g2.are_neighs(nds[a].second, nds[b].second);
249 }
250

251 bool are_black_neighs(node_t a, node_t b) const {
252 bool ans = g1.are_neighs(nds[a].first, nds[b].first) &&
253 g2.are_neighs(nds[a].second, nds[b].second);
254 return ans;
255 }
256 };
257 #endif

A.2 Black connected cliques

A.2.1 bccliques.cpp

This file contains the implementation of the main function.

1 #include "graph.hpp"
2 #include "permute.hpp"
3 #include "bccliques.hpp"
4

5 int main(int argc, char** argv) {
6 if (argc < 3) {
7 fprintf(stderr, "Usage: %s g1 g2\n", argv[0]);
8 return 1;
9 }

10 FILE* f1 = fopen(argv[1], "r");
11 FILE* f2 = fopen(argv[2], "r");
12 auto tmp = product_graph_t<>::read_oly(f1, f2);
13 auto rs = ReverseSearch<BlackConnectedCliques<>>(tmp);



A.2. BLACK CONNECTED CLIQUES 55

14 rs.run();
15 }

A.2.2 bccliques.hpp

This file contains the functions that are needed by the framework to enumerate black-
connected cliques.

1 #ifndef BCCLIQUES_HPP
2 #define BCCLIQUES_HPP
3 #include "framework.hpp"
4 #include "graph.hpp"
5 #include "cuckoo.hpp"
6 #include <queue>
7

8 template <typename node_t = uint32_t>
9 class BlackConnectedCliques: public CommutableSystem<product_graph_t<node_t>>

{↪→

10 public:
11 using CommutableSystem<product_graph_t<node_t>>::CommutableSystem;
12 typedef typename CommutableSystem<product_graph_t<node_t>>::elem_t

elem_t;↪→

13 /**
14 * Checks if a given subset is a solution.
15 */
16 virtual bool is_good(const std::vector<elem_t>& s) override {
17 throw std::runtime_error("This function should never be called!");
18 }
19

20 /**
21 * Solves the restricted problem
22 */
23 virtual void restricted_problem(
24 const std::vector<elem_t>& s,
25 elem_t v,
26 const std::function<bool(std::vector<elem_t>)>& cb
27 ) override {
28 cuckoo_hash_set<elem_t> ok;
29 ok.insert(v);
30 for (auto n: s)
31 if (this->e.are_neighs(v, n))
32 ok.insert(n);
33 std::vector<elem_t> sol;
34 cuckoo_hash_set<elem_t> visited;
35 std::queue<elem_t> q;
36 q.push(v);
37 while (!q.empty()) {
38 auto t = q.front(); q.pop();
39 if (!ok.count(t)) continue;
40 if (visited.count(t)) continue;
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41 visited.insert(t);
42 sol.push_back(t);
43 this->e.black_neighs(t, [&](node_t n) -> bool {
44 q.push(n);
45 return false;
46 });
47 }
48 cb(sol);
49 }
50

51 /**
52 * Reports a solution
53 */
54 virtual void report_solution(const std::vector<elem_t>& s) override {
55 printf("{");
56 for (auto n: s) printf("%u, ", this->e.to_pair(n).first);
57 printf("\b\b} -> {");
58 for (auto n: s) printf("%u, ", this->e.to_pair(n).second);;
59 printf("\b\b}\n");
60 fflush(stdout);
61 }
62

63 /**
64 * Checks if we can add a given element to a solution
65 */
66 virtual bool can_add(const std::vector<elem_t>& s, elem_t v) override {
67 uint32_t black_cnt = 0;
68 uint32_t neigh_cnt = 0;
69 for (auto n: s) {
70 if (this->e.are_neighs(v, n)) neigh_cnt++;
71 if (this->e.are_black_neighs(v, n)) black_cnt++;
72 }
73 return black_cnt > 0 && neigh_cnt == s.size();
74 }
75

76 /**
77 * Returns true if the resticted problem may have at least two solutions.
78 */
79 virtual bool restr_multiple() override {
80 return false;
81 }
82

83 /**
84 * Checks if the given element can be a valid seed of a solution,
85 * or a root if NULL is specified.
86 */
87 virtual bool is_seed(elem_t v, const std::unordered_set<elem_t>* s)

override {↪→

88 bool can_be = true;
89 this->e.black_neighs(v, [&] (elem_t e) {
90 if (e > v) return true;
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91 if (s == nullptr || s->count(e)) {
92 can_be = false;
93 return true;
94 }
95 return false;
96 });
97 return can_be;
98 }
99

100 /**
101 * Iterates over all the possible new elements that could be added
102 * because of a single new element in a solution.
103 */
104 virtual void complete_cands(
105 const std::vector<elem_t>* ground_set,
106 elem_t new_elem,
107 const std::function<bool(elem_t)>& cb
108 ) override {
109 if (!ground_set) {
110 this->e.black_neighs(new_elem, cb);
111 } else {
112 for (auto i: *ground_set) {
113 if (cb(i))
114 break;
115 }
116 }
117 }
118

119 /**
120 * Iterates over all the possible new elements that could be used
121 * for the restricted problem
122 */
123 virtual void restricted_cands(
124 const std::vector<elem_t>& s,
125 const std::vector<int32_t>& level,
126 const std::function<bool(elem_t)>& cb
127 ) override {
128 std::set<elem_t> els;
129 for (auto i: s) {
130 this->e.black_neighs(i, [&](elem_t v) {
131 els.insert(v);
132 return false;
133 });
134 }
135 for (auto i: s) els.erase(i);
136 for (auto i: els) {
137 if (cb(i))
138 break;
139 }
140 }
141 };
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142

143 #endif

A.3 Data structures and other common things

A.3.1 binary_search.hpp

This file contains a fast implementation of binary search.

1 #ifndef _BINARY_SEARCH_T
2 #define _BINARY_SEARCH_T
3 #include "dynarray.hpp"
4 #include <vector>
5

6 template<typename T = uint32_t>
7 class binary_search_t {
8 private:
9 dynarray<T> support;

10 public:
11 typedef dynarray<T>& data_type;
12 typedef const T* iterator;
13

14 void init(const std::vector<T>& v) {
15 support.resize(v.size());
16 unsigned cnt = 0;
17 while (cnt != v.size()) {
18 support[cnt] = v[cnt];
19 cnt++;
20 }
21 }
22

23 iterator begin() const {
24 return support.begin();
25 }
26

27 iterator it_at(size_t p) const {
28 return begin() + p;
29 }
30

31 iterator end() const {
32 return support.end();
33 }
34

35 size_t size() const {return support.size();}
36

37 T get_at(size_t idx) const {
38 return support[idx];
39 }
40

41 bool count(T v) const {
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42 int64_t n = support.size();
43 const T* arr = &support[0];
44 while (n > 1) {
45 const int64_t half = n/2;
46 arr = (arr[half] < v)?(arr+half):arr;
47 n -= half;
48 }
49 const T* tmp = (*arr < v)+arr;
50 return tmp < support.end() && *tmp == v;
51 }
52

53 iterator lower_bound(T v) const {
54 return std::lower_bound(support.begin(), support.end(), v);
55 }
56

57 iterator upper_bound(T v) const {
58 return std::upper_bound(support.begin(), support.end(), v);
59 }
60

61 data_type data() {
62 return support;
63 }
64 };
65 #endif

A.3.2 common.hpp

This file contains an hash function for pairs.

1 #ifndef COMMON_HPP
2 #define COMMON_HPP
3 #include <unordered_map>
4

5 struct pair_hash {
6 template <class T1, class T2>
7 std::size_t operator () (const std::pair<T1,T2> &p) const {
8 auto h1 = std::hash<T1>{}(p.first);
9 auto h2 = std::hash<T2>{}(p.second);

10 h1 ^= h2 + 0x9e3779b9 + (h1<<6) + (h1>>2);
11 return h1;
12 }
13 };
14 #endif

A.3.3 cuckoo.hpp

This file contains a fast implementation of a cuckoo hash set.

1 #ifndef _CUCKOO_H
2 #define _CUCKOO_H
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3 #include <vector>
4 #include <assert.h>
5 #include <immintrin.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8

9 template<typename T, T missing = -1,
10 #ifdef __KNC__
11 int bucket_size = 64/sizeof(T)
12 #else
13 int bucket_size = 16/sizeof(T)
14 #endif
15 >
16 class cuckoo_hash_set {
17 public:
18 typedef T value_type;
19 typedef value_type& reference;
20 typedef const value_type& const_reference;
21 typedef value_type* pointer;
22 typedef const value_type* const_pointer;
23 typedef std::ptrdiff_t difference_type;
24 typedef size_t size_type;
25 private:
26 pointer ht;
27 size_t mask;
28 size_t sz;
29

30 size_t hash_1(const value_type& k) const {
31 return k & mask;
32 }
33

34 size_t hash_2(const value_type& k) const {
35 return ~k & mask;
36 }
37

38 void insert(value_type& k, value_type*& table) {
39 int h1 = hash_1(k);
40 for (int pos=0; pos<bucket_size; pos++)
41 if (table[h1*bucket_size+pos] == missing) {
42 table[h1*bucket_size+pos] = std::move(k);
43 return;
44 }
45 int h2 = hash_2(k);
46 for (int pos=0; pos<bucket_size; pos++)
47 if (table[h2*bucket_size+pos] == missing) {
48 table[h2*bucket_size+pos] = std::move(k);
49 return;
50 }
51 bool use_hash_1 = true;
52 for (unsigned i=0; i<mask; i++) {
53 value_type cuckooed;
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54 size_t hash;
55 if (use_hash_1) hash = hash_1(k);
56 else hash = hash_2(k);
57 int pos = 0;
58 for (; pos<bucket_size; pos++)
59 if (table[hash*bucket_size+pos] == missing)
60 break;
61 if (pos == bucket_size) {
62 cuckooed = std::move(table[hash*bucket_size]);
63 pos = 1;
64 for (; pos<bucket_size; pos++)
65 table[hash*bucket_size+pos-1] =

std::move(table[hash*bucket_size+pos]);↪→

66 table[hash*bucket_size+pos-1] = std::move(k);
67 } else {
68 cuckooed = std::move(table[hash*bucket_size+pos]);
69 table[hash*bucket_size+pos] = std::move(k);
70 }
71 use_hash_1 = hash == hash_2(cuckooed);
72 k = std::move(cuckooed);
73 if (k == missing) return;
74 }
75 rehash(table);
76 insert(k, table);
77 }
78

79 void rehash(value_type*& table) {
80 auto oldmask = mask;
81 if (mask == 0) mask = 1;
82 else mask = (mask<<1) | mask;
83 pointer newt = 0;
84 posix_memalign((void**)&newt, sizeof(T)*bucket_size,

sizeof(T)*capacity());↪→

85 std::fill(newt, newt+capacity(), missing);
86 for (size_t i=0; i<(oldmask+1)*bucket_size; i++)
87 if (table[i] != missing)
88 insert(table[i], newt);
89 std::swap(table, newt);
90 free(newt);
91 }
92 public:
93 class const_iterator {
94 private:
95 const cuckoo_hash_set& container;
96 size_type offset;
97 public:
98 typedef cuckoo_hash_set::value_type value_type;
99 typedef cuckoo_hash_set::const_reference const_reference;

100 typedef cuckoo_hash_set::const_pointer const_pointer;
101 typedef cuckoo_hash_set::difference_type difference_type;
102 typedef std::forward_iterator_tag iterator_category;
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103

104 const_iterator(const cuckoo_hash_set& container, size_type offset_):
container(container), offset(offset_) {↪→

105 while (offset != container.capacity() && container.ht[offset] ==
missing)↪→

106 ++offset;
107 }
108 bool operator==(const const_iterator& other) const {
109 return &container == &other.container && offset == other.offset;
110 }
111 bool operator!=(const const_iterator& other) const {
112 return !(*this == other);
113 }
114

115 const_iterator& operator++() {
116 ++offset;
117 while (offset != container.capacity() && container.ht[offset] ==

missing)↪→

118 ++offset;
119 return *this;
120 }
121 const_iterator operator++(int) {
122 const_iterator tmp = *this;
123 ++*this;
124 return tmp;
125 }
126

127 const_reference operator*() const {
128 return container.ht[offset];
129 };
130 };
131

132 typedef const_iterator iterator;
133 friend class const_iterator;
134

135 cuckoo_hash_set& operator=(const cuckoo_hash_set& other) = delete;
136

137 cuckoo_hash_set(const cuckoo_hash_set& other): ht(nullptr) {
138 posix_memalign((void**)&ht, sizeof(T)*bucket_size,

sizeof(T)*other.capacity());↪→

139 for (uint64_t i=0; i<other.capacity(); i++)
140 ht[i] = other.ht[i];
141 mask = other.mask;
142 sz = other.sz;
143 };
144

145 ~cuckoo_hash_set() {
146 free(ht);
147 }
148

149 cuckoo_hash_set(): mask(0), sz(0) {
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150 posix_memalign((void**)&ht, sizeof(T)*bucket_size,
sizeof(T)*bucket_size);↪→

151 std::fill(ht, ht+bucket_size, missing);
152 }
153

154 const_iterator begin() const {
155 return const_iterator(*this, 0);
156 }
157 const_iterator end() const {
158 return const_iterator(*this, capacity());
159 }
160

161 bool operator==(const cuckoo_hash_set<T>& oth) {
162 if (oth.size() != size()) return false;
163 for (const auto& x: oth)
164 if (!count(x))
165 return false;
166 return true;
167 }
168

169 bool operator!=(const cuckoo_hash_set<T>& oth) {
170 return !(*this == oth);
171 }
172

173 void insert(value_type k) {
174 if (count(k)) {
175 return;
176 }
177 insert(k, ht);
178 sz++;
179 }
180 bool count(const value_type& k) const {
181 int h1 = hash_1(k);
182 int h2 = hash_2(k);
183 #ifndef __KNC__
184 if (bucket_size == 4 && sizeof(T) == 4) {
185 __m128i cmp = _mm_set1_epi32(k);
186 __m128i b1 = _mm_load_si128((__m128i*)&ht[bucket_size*h1]);
187 __m128i b2 = _mm_load_si128((__m128i*)&ht[bucket_size*h2]);
188 __m128i flag = _mm_or_si128(_mm_cmpeq_epi32(cmp, b1),

_mm_cmpeq_epi32(cmp, b2));↪→

189 return _mm_movemask_epi8(flag);
190 }
191 #else
192 if (bucket_size == 16 && sizeof(T) = 4) {
193 __m512i cmp = _mm512_set1_epi32(k);
194 __m512i b1 = _mm512_load_epi32(&ht[bucket_size*h1]);
195 __m512i b2 = _mm512_load_epi32(&ht[bucket_size*h2]);
196 return _mm512_cmpeq_epi32_mask(b1, cmp) ||

_mm512_cmpeq_epi32_mask(b2, cmp);↪→

197 }
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198 #endif
199 bool result = false;
200 for (unsigned i=0; i<bucket_size; i++)
201 result |= (ht[(bucket_size*h1)|i] == k || ht[(bucket_size*h2)|i]

== k);↪→

202 return result;
203 }
204 void reserve(size_type sz) {
205 if (sz <= capacity()) return;
206 mask++;
207 while (mask <= sz/bucket_size) mask <<= 1;
208 free(ht);
209 posix_memalign((void**)&ht, sizeof(T)*bucket_size,

sizeof(T)*capacity());↪→

210 std::fill(ht, ht+capacity(), missing);
211 mask--;
212 }
213 size_type size() const {
214 return sz;
215 }
216 size_type capacity() const {
217 return (mask+1)*bucket_size;
218 }
219 bool empty() const {
220 return sz == 0;
221 }
222 void erase(const value_type& k) {
223 int h1 = hash_1(k);
224 for (int pos=0; pos<bucket_size; pos++)
225 if (ht[h1*bucket_size+pos] == k) {
226 ht[h1*bucket_size+pos] = missing;
227 sz--;
228 return;
229 }
230 int h2 = hash_2(k);
231 for (int pos=0; pos<bucket_size; pos++)
232 if (ht[h2*bucket_size+pos] == k) {
233 ht[h2*bucket_size+pos] = missing;
234 sz--;
235 return;
236 }
237 }
238 void clear() {
239 std::fill(ht, ht+bucket_size*capacity(), missing);
240 }
241

242 int front() const {
243 return *begin();
244 }
245 };
246 #endif
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A.3.4 dynarray.hpp

This file contains a simple, fixed size array whose size is decided at construction time.

1 #ifndef _DYNARRAY_H
2 #define _DYNARRAY_H
3 #include <cstddef>
4 #include <stdexcept>
5 #include <algorithm>
6 #include <memory>
7

8 template< class T >
9 struct dynarray {

10 // types:
11 typedef T value_type;
12 typedef T& reference;
13 typedef const T& const_reference;
14 typedef T* iterator;
15 typedef const T* const_iterator;
16 typedef std::reverse_iterator<iterator> reverse_iterator;
17 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
18 typedef size_t size_type;
19 typedef ptrdiff_t difference_type;
20

21 // fields:
22 private:
23 T* store;
24 size_type count;
25

26 // helper functions:
27 void check(size_type n) {
28 if (store == 0) throw std::out_of_range("dynarray");
29 if (n >= count) throw std::out_of_range("dynarray");
30 }
31 T* alloc(size_type n) {
32 if (n>std::numeric_limits<size_type>::max()/sizeof(T))
33 throw std::out_of_range("dynarray");
34 return reinterpret_cast<T*>(malloc(n*sizeof(T)));
35 }
36

37 void init(size_t n) {
38 size_type i;
39 try {
40 for (size_type i=0; i<count; ++i)
41 new (store+i) T;
42 } catch (...) {
43 for (; i>0; --i)
44 (store+(i-1))->~T();
45 throw;
46 }
47 }
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48

49 void init(size_t n, const value_type& v) {
50 size_type i;
51 try {
52 for (size_type i=0; i<count; ++i)
53 new (store+i) T(v);
54 } catch (...) {
55 for (; i>0; --i)
56 (store+(i-1))->~T();
57 throw;
58 }
59 }
60 public:
61 // construct and destruct:
62 dynarray(): store(nullptr), count(0) {};
63 const dynarray operator=(const dynarray&) = delete;
64

65 explicit dynarray(size_type c): store(alloc(c)), count(c) {
66 init(c);
67 }
68

69 explicit dynarray(size_type c, const value_type& v): store(alloc(c)),
count(c) {↪→

70 init(c, v);
71 }
72

73 dynarray(const dynarray& d): store(alloc(d.count)), count(d.count) {
74 try {
75 std::uninitialized_copy(d.begin(), d.end(), begin());
76 } catch (...) {
77 free(store);
78 throw;
79 }
80 }
81

82 ~dynarray() {
83 if (store == 0) return;
84 for (size_type i = 0; i<count; ++i)
85 (store+i)->~T();
86 free(store);
87 }
88

89 void resize(size_type n) {
90 this->~dynarray();
91 store = alloc(n);
92 count = n;
93 init(n);
94 }
95

96 void resize(size_type n, const value_type& v) {
97 this->~dynarray();
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98 store = alloc(n);
99 count = n;

100 init(n, v);
101 }
102

103 // iterators:
104 iterator begin() { return store; }
105 const_iterator begin() const { return store; }
106 const_iterator cbegin() const { return store; }
107 iterator end() { return store + count; }
108 const_iterator end() const { return store + count; }
109 const_iterator cend() const { return store + count; }
110

111 reverse_iterator rbegin() { return reverse_iterator(end());
}↪→

112 const_reverse_iterator rbegin() const { return reverse_iterator(end());
}↪→

113 reverse_iterator rend() { return
reverse_iterator(begin()); }↪→

114 const_reverse_iterator rend() const { return
reverse_iterator(begin()); }↪→

115

116 // capacity:
117 size_type size() const { return count; }
118 size_type max_size() const { return count; }
119 bool empty() const { return count == 0; }
120

121 // element access:
122 reference operator[](size_type n) { return store[n]; }
123 const_reference operator[](size_type n) const { return store[n]; }
124

125 reference front() { return store[0]; }
126 const_reference front() const { return store[0]; }
127 reference back() { return store[count-1]; }
128 const_reference back() const { return store[count-1]; }
129

130 const_reference at(size_type n) const { check(n); return store[n]; }
131 reference at(size_type n) { check(n); return store[n]; }
132

133 // data access:
134 T* data() { return store; }
135 const T* data() const { return store; }
136

137 friend void swap(dynarray<value_type>& a, dynarray<value_type>& b) {
138 std::swap(a.store, b.store);
139 std::swap(a.count, b.count);
140 }
141 };
142

143 #endif
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