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Set systems
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Definitions

Definition
A set system F over a ground set E is a family of subsets of E ,
i.e. F ⊆ 2E .

Definition
An independence system is a set system that is closed under
subsets, so that if A ∈ F then any B ⊆ A also belongs to F.
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Example: clique

Definition
A clique in a graph G is a subset of the nodes such that any two of
them are connected by an edge.
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Definitions

Definition
A strongly accessible set system is a set system that satisfies the
following property: given A,B ∈ F, if A ( B then there is an
a ∈ B \ A such that A ∪ {a} ∈ F.

Definition
A commutable set system is a strongly accessible set system that
satisfies the following property: given A,B,C ,D ∈ F, if
A ⊂ B ∩ C , B ∪ C ⊂ D then B ∪ C ∈ F.
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Example: black-connected cliques

Definition
In a graph with both black and white edges, a black-connected
clique is a subset of the nodes such that it is a clique and it is
connected while considering only black edges.
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The “commutable” property for black-connected cliques
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Example: k-plex

Definition
A k-plex in a graph G is a subset of the nodes such that for any
node v there are at most k nodes that do not have an edge with v .
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Example: connected k-plex

Definition
A connected k-plex in a graph G is a subset of the nodes that is
both a k-plex and connected.
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Example: connected k-plex

Definition
A connected k-plex in a graph G is a subset of the nodes that is
both a k-plex and connected.
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Our goal

The objective of our framework is to enumerate all the maximal
sets (by inclusion) in a commutable set system.
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Reverse search
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parent

Definition
Let F be a strongly accessible set system. We say that parent is a
parent function if it has the following properties:

• It is defined on all the maximal sets in F, except for some of
them we will call the roots.

• parent(S) is another maximal set in F, for all the maximal
solutions S for which it is defined (so for all the S that are not
a root).

• There is an order ≺ such that parent(S) ≺ S for all the S that
are not a root.
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children

Definition
If parent is a parent function, we define children(S) for a maximal
solution S to be the set of all maximal solutions C such that
parent(C ) = S .

Theorem
Let G be the directed graph that has the maximal solutions of F as
nodes, and has an outgoing edge from S to any solution in
children(S). Then G is a directed forest rooted in the solutions
that are roots.
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Example

On the right is a possible reverse search graph for the cliques in the
graph on the left.
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parent and children for commutable
set systems
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Seed

Definition
Given a commutable set system F and one of its feasible sets S , we
say that s is a seed of S if s ∈ S and {s} ∈ F. The canonical seed
of S , denoted by seed(S), is the smallest possible seed according to
the ordering of the elements of E .
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Example of these definitions
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IS = [(0, 1), (1, 3), (1, 5), (2, 6), (3, 2), (3, 4)]
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Level

Definition
Given a commutable set system F, one of its feasible sets S and a
seed s of S , the level of an element v with respect to s (level sS(v))
is defined as follows:

• if v = s, then the level of v is 0.

• the level of v is k + 1 if k is the smallest integer such that
there is a S ′ ⊆ S that satisfies:

• its elements have level 6 k
• S ′ ∪ {v } ∈ F

• s ∈ S ′.

• if there is no such subset, we say that the level of v is ∞.
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Example of these definitions
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Level order

Definition
The level order ≺ between any two solutions P , Q of a
commutable set system F is defined as follows:

• Let lP = [(levelP(v), v) ∀v ∈ P], the tuple of pairs made by
the level of an element and the element itself, sorted in
increasing order.

• Let lQ be defined in the same way.

• We say that P ≺ Q if and only if lP is smaller than lQ

according to lexicographical order.
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complete → parent

Definition
Given a non-maximal solution S of a commutable set system F,
complete(S) is defined as the solution obtained by iteratively
adding the smallest-level element to S . In case of ties, the node
with the lowest label is chosen.

complete({1}) = [(0, 1)

, (1, 3), (1, 5), (2, 6), (3, 2), (3, 4)

]
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Given a maximal solution S , parent(S) is defined as complete of
the longest prefix P of S such that complete(P) 6= S . This prefix is
called core(S) and the next element in S according to level order is
called parind(S).

We can prove that parent(S) ≺ S .

22



complete → parent

Definition
Given a non-maximal solution S of a commutable set system F,
complete(S) is defined as the solution obtained by iteratively
adding the smallest-level element to S . In case of ties, the node
with the lowest label is chosen.

complete({1}) = [(0, 1), (1, 3), (1, 5), (2, 6), (3, 2), (3, 4)]

Definition
Given a maximal solution S , parent(S) is defined as complete of
the longest prefix P of S such that complete(P) 6= S . This prefix is
called core(S) and the next element in S according to level order is
called parind(S).
We can prove that parent(S) ≺ S .

22



children

Definition
Given a strongly accessible set system F on E , a maximal feasible
set S and an element v ∈ E \ S , the restricted problem P(S , v) is
the problem of enumerating all the maximal elements of the family

Gv
S = {A ∈ F : A ⊆ S ∪ {v }}

Theorem
Given a maximal solution C such that parent(C ) = S , core(C ) is
the prefix ending just before parind(C ) of a solution of
P(S , parind(C )).
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Applications
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Cliques and black-connected cliques

In both cases, the restricted problem is easy and has at most one
solution. Let q be the maximum size of a black-connected clique.
Then

Theorem
All the maximal black-connected cliques in a graph G may be
enumerated in O(q5∆2

b) time per solution, using only O(q) extra
memory (other than the memory used to store G ).
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Connected k-plexes

Lemma
Assuming k to be a constant, if S is a k-plex and v is a node in
V \ S , then there are at most 1+ f (k)|S |k−1 maximal k-plexes in
S ∪ {v }, with f (k) = (k − 1)2k for k > 1 and f (1) = 1. Moreover,
they can be computed in O(kf (k)|S |k) time using only O(kq)

memory.

Theorem
All the connected k-plexes in a graph G can be enumerated in
O(qk+4∆2f (k)) time per solution, using only O(kq) extra memory
(other than the memory used to store G ).
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Conclusions

• We have obtained a framework that achieves polynomial total
time enumeration with low memory of suitable set families

• We have studied some families and shown how to apply the
framework

• Future work: an experimental evaluation of the algorithms
obtained

• Future work: extending the framework to more general families
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Any questions?
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