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Definition

An independence system is a set system that is closed under
subsets, so that if A € F then any B C A also belongs to &.
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them are connected by an edge.
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Definition

A commutable set system is a strongly accessible set system that
satisfies the following property: given A, B, C,D € &, if
ACBNC, BUuCcCDthen BUC €.
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clique is a subset of the nodes such that it is a clique and it is
connected while considering only black edges.
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The “commutable” property for black-connected cliques




Example: k-plex

Definition
A k-plex in a graph G is a subset of the nodes such that for any
node v there are at most k nodes that do not have an edge with v.
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Example: connected k-plex

Definition
A connected k-plex in a graph G is a subset of the nodes that is
both a k-plex and connected.



Example: connected k-plex

Definition
A connected k-plex in a graph G is a subset of the nodes that is
both a k-plex and connected.




The objective of our framework is to enumerate all the maximal
sets (by inclusion) in a commutable set system.
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Reverse search
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Definition
Let F be a strongly accessible set system. We say that parent is a
parent function if it has the following properties:

e |t is defined on all the maximal sets in F, except for some of
them we will call the roots.
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Definition
Let F be a strongly accessible set system. We say that parent is a
parent function if it has the following properties:

e |t is defined on all the maximal sets in F, except for some of
them we will call the roots.

e parent(S) is another maximal set in &, for all the maximal
solutions S for which it is defined (so for all the S that are not

a root).
e There is an order < such that parent(S) < S for all the S that
are not a root.
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Definition
If parent is a parent function, we define children(S) for a maximal

solution S to be the set of all maximal solutions C such that
parent(C) = S.
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Definition

If parent is a parent function, we define children(S) for a maximal
solution S to be the set of all maximal solutions C such that
parent(C) = S.

Theorem
Let G be the directed graph that has the maximal solutions of F as

nodes, and has an outgoing edge from S to any solution in
children(S). Then G is a directed forest rooted in the solutions
that are roots.
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On the right is a possible reverse search graph for the cliques in the

graph on the left.
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On the right is a possible reverse search graph for the cliques in the

graph on the left.
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parent and children for commutable
set systems
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Definition
Given a commutable set system JF and one of its feasible sets S, we

say that s is a seed of S if s € S and {s} € F. The canonical seed
of S, denoted by seed(S), is the smallest possible seed according to
the ordering of the elements of E.
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Example of these definitions
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Example of these definitions

seed(S) =1
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Level

Definition
Given a commutable set system JF, one of its feasible sets S and a

seed s of S, the level of an element v with respect to s (levelZ(v))

is defined as follows:

e if v =35, then the level of v is 0.
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Level

Definition
Given a commutable set system JF, one of its feasible sets S and a

seed s of S, the level of an element v with respect to s (levelZ(v))

is defined as follows:

e if v =5, then the level of v is 0.
e the level of v is k+ 1 if k is the smallest integer such that
there is a S’ C S that satisfies:
e its elements have level < k
e S'U{vied
e scS’.

e if there is no such subset, we say that the level of v is co.
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Example of these definitions
Level 0 @

seed(S) =1
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Level order

Definition
The level order < between any two solutions P, @ of a
commutable set system F is defined as follows:

o Let IP = [(levelp(v),v) Vv € P], the tuple of pairs made by
the level of an element and the element itself, sorted in
increasing order.
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Level order

Definition
The level order < between any two solutions P, @ of a
commutable set system F is defined as follows:

o Let IP = [(levelp(v),v) Vv € P], the tuple of pairs made by
the level of an element and the element itself, sorted in
increasing order.

e Let /Q be defined in the same way.

e We say that P < Q if and only if /P is smaller than /Q
according to lexicographical order.
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Example of these definitions

Level 0 0
Level 1 e‘e

Level 2 e
Level 3 e‘e

seed(S) =1
IS =1(0,1),(1,3),(1,5),(2,6), (3,2), (3,4)]
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complete — parent

Definition
Given a non-maximal solution S of a commutable set system &,

complete(S) is defined as the solution obtained by iteratively
adding the smallest-level element to S. In case of ties, the node
with the lowest label is chosen.
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complete — parent

Definition
Given a non-maximal solution S of a commutable set system &,

complete(S) is defined as the solution obtained by iteratively
adding the smallest-level element to S. In case of ties, the node
with the lowest label is chosen.

complete({1}) = [(0,1) ]
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Given a non-maximal solution S of a commutable set system &,

complete(S) is defined as the solution obtained by iteratively
adding the smallest-level element to S. In case of ties, the node
with the lowest label is chosen.

comp/ete({l}) = [(0) 1)7 (1) 3)) (1) 5) ]
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Definition

Given a non-maximal solution S of a commutable set system &,
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Definition

Given a maximal solution S, parent(S) is defined as complete of
the longest prefix P of S such that complete(P) # S. This prefix is
called core(S) and the next element in S according to level order is

called parind(S).
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complete — parent

Definition

Given a non-maximal solution S of a commutable set system &,
complete(S) is defined as the solution obtained by iteratively
adding the smallest-level element to S. In case of ties, the node

with the lowest label is chosen.

complete({1}) = [(0,1), (1,3), (1,5),(2,6), (3,2), (3,4)]

Definition

Given a maximal solution S, parent(S) is defined as complete of
the longest prefix P of S such that complete(P) # S. This prefix is
called core(S) and the next element in S according to level order is
called parind(S).

We can prove that parent(S) < S.
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Definition
Given a strongly accessible set system JF on E, a maximal feasible

set S and an element v € E\ S, the restricted problem P(S,v) is
the problem of enumerating all the maximal elements of the family

G¢={AecF:ACSU{v}}
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Definition
Given a strongly accessible set system JF on E, a maximal feasible
set S and an element v € E\ S, the restricted problem P(S,v) is

the problem of enumerating all the maximal elements of the family
G¢={AecF:ACSU{v}}

Theorem
Given a maximal solution C such that parent(C) = S, core(C) is

the prefix ending just before parind(C) of a solution of
P(S, parind(C)).
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Applications
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Cliques and black-connected cliques

In both cases, the restricted problem is easy and has at most one
solution. Let g be the maximum size of a black-connected clique.
Then

Theorem
All the maximal black-connected cliques in a graph G may be

enumerated in O(q5A%) time per solution, using only O(q) extra
memory (other than the memory used to store G).
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Connected k-plexes

Lemma
Assuming k to be a constant, if S is a k-plex and v is a node in

V' \'S, then there are at most 1+ f(k)|S|*~1 maximal k-plexes in
SU{v}, with f(k) = (k—1)% for k > 1 and f(1) = 1. Moreover,
they can be computed in O(kf (k)|S|¥) time using only O(kq)
memory.
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Connected k-plexes

Lemma
Assuming k to be a constant, if S is a k-plex and v is a node in

V' \'S, then there are at most 1+ f(k)|S|*~1 maximal k-plexes in
SU{v}, with f(k) = (k—1)% for k > 1 and f(1) = 1. Moreover,
they can be computed in O(kf (k)|S|¥) time using only O(kq)
memory.

Theorem
All the connected k-plexes in a graph G can be enumerated in

O(qkt*A2f(k)) time per solution, using only O(kq) extra memory
(other than the memory used to store G).
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Conclusions

e We have obtained a framework that achieves polynomial total
time enumeration with low memory of suitable set families
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Conclusions

e We have obtained a framework that achieves polynomial total
time enumeration with low memory of suitable set families

e We have studied some families and shown how to apply the
framework

e Future work: an experimental evaluation of the algorithms
obtained

e Future work: extending the framework to more general families
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Any questions?
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