A new algorithmic framework for enumerating commutable set properties

Luca Versari July 21, 2017

Set systems

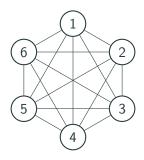
Definition A set system \mathcal{F} over a ground set E is a family of subsets of E, i.e. $\mathcal{F} \subseteq 2^{E}$.

Definition A set system \mathcal{F} over a ground set E is a family of subsets of E, i.e. $\mathcal{F} \subseteq 2^{E}$.

Definition An **independence system** is a set system that is closed under subsets, so that if $A \in \mathcal{F}$ then any $B \subseteq A$ also belongs to \mathcal{F} .

A clique in a graph G is a subset of the nodes such that any two of them are connected by an edge.

A clique in a graph G is a subset of the nodes such that any two of them are connected by an edge.



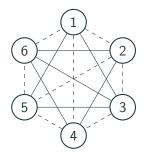
Definition A strongly accessible set system is a set system that satisfies the following property: given $A, B \in \mathcal{F}$, if $A \subsetneq B$ then there is an $a \in B \setminus A$ such that $A \cup \{a\} \in \mathcal{F}$.

A strongly accessible set system is a set system that satisfies the following property: given $A, B \in \mathcal{F}$, if $A \subsetneq B$ then there is an $a \in B \setminus A$ such that $A \cup \{a\} \in \mathcal{F}$.

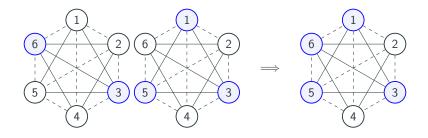
Definition A **commutable set system** is a strongly accessible set system that satisfies the following property: given $A, B, C, D \in \mathcal{F}$, if $A \subset B \cap C, B \cup C \subset D$ then $B \cup C \in \mathcal{F}$.

In a graph with both black and white edges, a **black-connected clique** is a subset of the nodes such that it is a clique and it is connected while considering only black edges.

In a graph with both black and white edges, a **black-connected clique** is a subset of the nodes such that it is a clique and it is connected while considering only black edges.

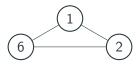


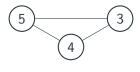
The "commutable" property for black-connected cliques



A k-plex in a graph G is a subset of the nodes such that for any node v there are at most k nodes that do not have an edge with v.

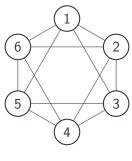
A k-plex in a graph G is a subset of the nodes such that for any node v there are at most k nodes that do not have an edge with v.





k = 4

Definition A **connected** k-**plex** in a graph G is a subset of the nodes that is both a k-plex and connected. **Definition** A **connected** k-**plex** in a graph G is a subset of the nodes that is both a k-plex and connected.



k = 2

The objective of our framework is to **enumerate all the maximal sets** (by inclusion) in a commutable set system.

Reverse search

Let \mathcal{F} be a strongly accessible set system. We say that *parent* is a **parent function** if it has the following properties:

• It is defined on all the maximal sets in \mathcal{F} , except for some of them we will call the *roots*.

Let \mathcal{F} be a strongly accessible set system. We say that *parent* is a **parent function** if it has the following properties:

- It is defined on all the maximal sets in \mathcal{F} , except for some of them we will call the *roots*.
- *parent*(*S*) is another maximal set in *F*, for all the maximal solutions *S* for which it is defined (so for all the *S* that are not a *root*).

Let \mathcal{F} be a strongly accessible set system. We say that *parent* is a **parent function** if it has the following properties:

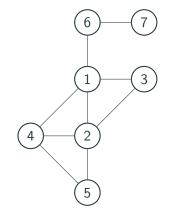
- It is defined on all the maximal sets in \mathcal{F} , except for some of them we will call the *roots*.
- *parent*(*S*) is another maximal set in *F*, for all the maximal solutions *S* for which it is defined (so for all the *S* that are not a *root*).
- There is an order ≺ such that *parent*(S) ≺ S for all the S that are not a *root*.

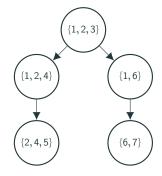
If *parent* is a parent function, we define children(S) for a maximal solution S to be the set of all maximal solutions C such that parent(C) = S.

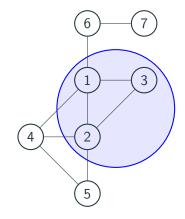
If *parent* is a parent function, we define children(S) for a maximal solution S to be the set of all maximal solutions C such that parent(C) = S.

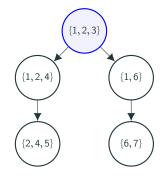
Theorem

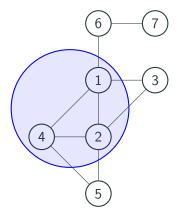
Let G be the directed graph that has the maximal solutions of \mathcal{F} as nodes, and has an outgoing edge from S to any solution in children(S). Then G is a directed forest rooted in the solutions that are roots.

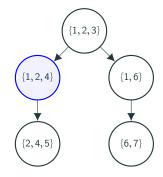


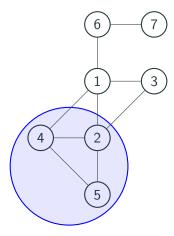


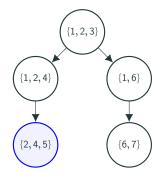


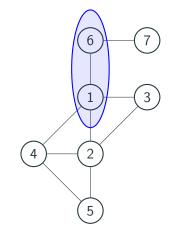


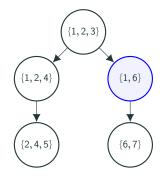


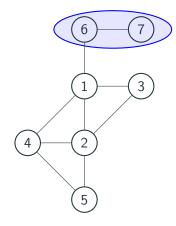


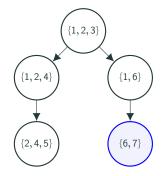


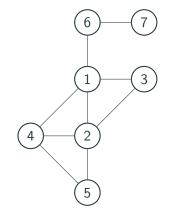


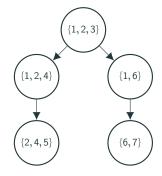












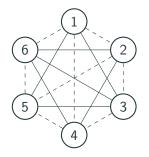
parent and children for commutable set systems

Given a commutable set system \mathcal{F} and one of its feasible sets S, we say that s is a **seed** of S if $s \in S$ and $\{s\} \in \mathcal{F}$. The **canonical seed** of S, denoted by seed(S), is the smallest possible seed according to the ordering of the elements of E.

Example of these definitions



Example of these definitions



seed(S) = 1

Level

Definition

Given a commutable set system \mathcal{F} , one of its feasible sets S and a seed s of S, the **level** of an element v with respect to s ($level_{S}^{s}(v)$) is defined as follows:

• if v = s, then the level of v is 0.

Level

Definition

Given a commutable set system \mathcal{F} , one of its feasible sets S and a seed s of S, the **level** of an element v with respect to s ($level_{S}^{s}(v)$) is defined as follows:

- if v = s, then the level of v is 0.
- the level of v is k + 1 if k is the smallest integer such that there is a S' ⊆ S that satisfies:

Level

Definition

Given a commutable set system \mathcal{F} , one of its feasible sets S and a seed s of S, the **level** of an element v with respect to s (*level*^s_S(v)) is defined as follows:

- if v = s, then the level of v is 0.
- the level of v is k + 1 if k is the smallest integer such that there is a S' ⊆ S that satisfies:
 - its elements have level $\leq k$

Level

Definition

Given a commutable set system \mathcal{F} , one of its feasible sets S and a seed s of S, the **level** of an element v with respect to s ($level_{S}^{s}(v)$) is defined as follows:

- if v = s, then the level of v is 0.
- the level of v is k + 1 if k is the smallest integer such that there is a S' ⊆ S that satisfies:
 - its elements have level $\leq k$
 - $S' \cup \{v\} \in \mathcal{F}$

Level

Definition

Given a commutable set system \mathcal{F} , one of its feasible sets S and a seed s of S, the **level** of an element v with respect to s ($level_{S}^{s}(v)$) is defined as follows:

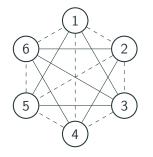
- if v = s, then the level of v is 0.
- the level of v is k + 1 if k is the smallest integer such that there is a S' ⊆ S that satisfies:
 - its elements have level $\leq k$
 - $S' \cup \{v\} \in \mathcal{F}$
 - $s \in S'$.

Level

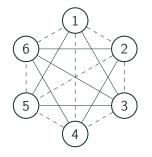
Definition

Given a commutable set system \mathcal{F} , one of its feasible sets S and a seed s of S, the **level** of an element v with respect to s ($level_{S}^{s}(v)$) is defined as follows:

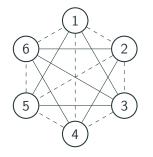
- if v = s, then the level of v is 0.
- the level of v is k + 1 if k is the smallest integer such that there is a S' ⊆ S that satisfies:
 - its elements have level $\leq k$
 - $S' \cup \{v\} \in \mathcal{F}$
 - $s \in S'$.
- if there is no such subset, we say that the level of v is ∞ .

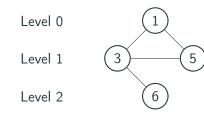


seed(S) = 1

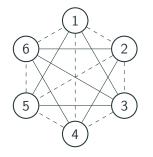


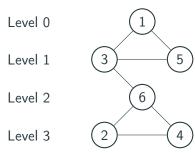
seed(S) = 1





$$seed(S) = 1$$





seed(S) = 1

The **level order** \prec between any two solutions *P*, *Q* of a commutable set system \mathcal{F} is defined as follows:

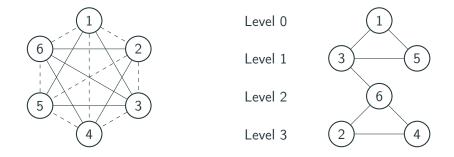
 Let IP = [(Ievel_P(v), v) ∀v ∈ P], the tuple of pairs made by the level of an element and the element itself, sorted in increasing order.

The **level order** \prec between any two solutions *P*, *Q* of a commutable set system \mathcal{F} is defined as follows:

- Let IP = [(Ievel_P(v), v) ∀v ∈ P], the tuple of pairs made by the level of an element and the element itself, sorted in increasing order.
- Let IQ be defined in the same way.

The **level order** \prec between any two solutions *P*, *Q* of a commutable set system \mathcal{F} is defined as follows:

- Let *IP* = [(*level*_P(v), v) ∀v ∈ P], the tuple of pairs made by the level of an element and the element itself, sorted in increasing order.
- Let IQ be defined in the same way.
- We say that *P* ≺ *Q* if and only if *IP* is smaller than *IQ* according to lexicographical order.

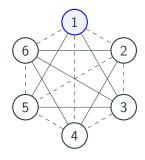


$$seed(S) = 1$$

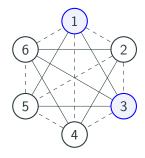
 $IS = [(0, 1), (1, 3), (1, 5), (2, 6), (3, 2), (3, 4)]$

Given a non-maximal solution S of a commutable set system \mathcal{F} , complete(S) is defined as the solution obtained by iteratively adding the smallest-level element to S. In case of ties, the node with the lowest label is chosen.

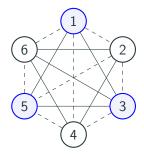
 $complete({1}) = [(0, 1)$



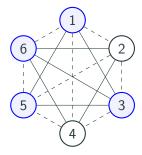
$$complete({1}) = [(0,1), (1,3)]$$



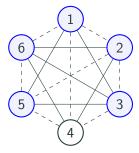
$$complete(\{1\}) = [(0,1), (1,3), (1,5)]$$



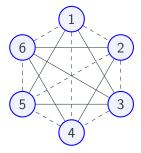
$$complete({1}) = [(0,1), (1,3), (1,5), (2,6)]$$



$$complete(\{1\}) = [(0,1), (1,3), (1,5), (2,6), (3,2)]$$



$$\textit{complete}(\{1\}) = [(0,1), (1,3), (1,5), (2,6), (3,2), (3,4)]$$



Given a non-maximal solution S of a commutable set system \mathcal{F} , complete(S) is defined as the solution obtained by iteratively adding the smallest-level element to S. In case of ties, the node with the lowest label is chosen.

 $complete(\{1\}) = [(0,1), (1,3), (1,5), (2,6), (3,2), (3,4)]$

Definition

Given a maximal solution S, parent(S) is defined as *complete* of the longest prefix P of S such that $complete(P) \neq S$. This prefix is called core(S) and the next element in S according to level order is called parind(S).

Given a non-maximal solution S of a commutable set system \mathcal{F} , complete(S) is defined as the solution obtained by iteratively adding the smallest-level element to S. In case of ties, the node with the lowest label is chosen.

 $\textit{complete}(\{1\}) = [(0,1),(1,3),(1,5),(2,6),(3,2),(3,4)]$

Definition

Given a maximal solution S, parent(S) is defined as complete of the longest prefix P of S such that $complete(P) \neq S$. This prefix is called core(S) and the next element in S according to level order is called parind(S).

We can prove that $parent(S) \prec S$.

Given a strongly accessible set system \mathcal{F} on E, a maximal feasible set S and an element $v \in E \setminus S$, the **restricted problem** $\mathcal{P}(S, v)$ is the problem of enumerating all the maximal elements of the family

 $\mathcal{G}_{\mathcal{S}}^{\mathsf{v}} = \{ A \in \mathcal{F} : A \subseteq \mathcal{S} \cup \{ \mathsf{v} \} \}$

Given a strongly accessible set system \mathcal{F} on E, a maximal feasible set S and an element $v \in E \setminus S$, the **restricted problem** $\mathcal{P}(S, v)$ is the problem of enumerating all the maximal elements of the family

 $\mathcal{G}_{\mathcal{S}}^{\mathsf{v}} = \{ A \in \mathcal{F} : A \subseteq \mathcal{S} \cup \{ \mathsf{v} \} \}$

Theorem

Given a maximal solution C such that parent(C) = S, core(C) is the prefix ending just before parind(C) of a solution of $\mathcal{P}(S, parind(C))$.

Applications

In both cases, the restricted problem is easy and has at most one solution. Let q be the maximum size of a black-connected clique. Then

Theorem

All the maximal black-connected cliques in a graph G may be enumerated in $O(q^5\Delta_b^2)$ time per solution, using only O(q) extra memory (other than the memory used to store G).

Lemma

Assuming k to be a constant, if S is a k-plex and v is a node in $V \setminus S$, then there are at most $1 + f(k)|S|^{k-1}$ maximal k-plexes in $S \cup \{v\}$, with $f(k) = (k-1)^{2k}$ for k > 1 and f(1) = 1. Moreover, they can be computed in $O(kf(k)|S|^k)$ time using only O(kq) memory.

Lemma

Assuming k to be a constant, if S is a k-plex and v is a node in $V \setminus S$, then there are at most $1 + f(k)|S|^{k-1}$ maximal k-plexes in $S \cup \{v\}$, with $f(k) = (k-1)^{2k}$ for k > 1 and f(1) = 1. Moreover, they can be computed in $O(kf(k)|S|^k)$ time using only O(kq) memory.

Theorem

All the connected k-plexes in a graph G can be enumerated in $O(q^{k+4}\Delta^2 f(k))$ time per solution, using only O(kq) extra memory (other than the memory used to store G).

• We have obtained a framework that achieves polynomial total time enumeration with low memory of suitable set families

- We have obtained a framework that achieves polynomial total time enumeration with low memory of suitable set families
- We have studied some families and shown how to apply the framework

- We have obtained a framework that achieves polynomial total time enumeration with low memory of suitable set families
- We have studied some families and shown how to apply the framework
- Future work: an experimental evaluation of the algorithms obtained

- We have obtained a framework that achieves polynomial total time enumeration with low memory of suitable set families
- We have studied some families and shown how to apply the framework
- Future work: an experimental evaluation of the algorithms obtained
- Future work: extending the framework to more general families

Any questions?