FJXL and FPNGE

Very Fast SIMD lossless image encoders

Luca Versari (veluca@google.com)

Overview

In November 2021, QOI took the Internet by storm.
Main selling point: simpler and faster than PNG.
| decided to find out whether you can do better with existing formats.

The result of this effort are FJXL and FPNGE: new fast encoders 100%
conformant to the JPEG XL and PNG specification, respectively.

https://github.com/phoboslab/qoi

Results

small photos: https://goo.gl/cmHIkl

large photos: JPEG XL CTC images, excluding non-photographic images

https://goo.gl/cmHIkl

Lossless compression speed in MP/s (more is better)

n.n32
CjxI9E3 883 small photo MP/s screenshots MP/s large photo MP/s
. | n.&82
cixI7 | 187
| 2.28
webp | 24
L 919
cjxI3 | 854
Ah
webpz0 (::;]q.;.OS
. 276.26
fixI o 604.33
. | 0.8n
optipng | 6;@3
. 358
libpng | 41‘51152
5
lodepng | 215?559
fpnge 383'14390 617.51
fpnge4 556'52;4.95 1,101.46
| 199.19
fpng-s 18866 364.03
313.41
fpng | v 52584
. \eaa—— 137.20
qoi m——" 293.81
Al
fpnge2 bos 316.55 1,328.06
I
0.00 500.00 1,000.00 1,500.00

AMD Ryzen 7 5800X 8-Core Processor, 1 thread

CjxI9E3
cjxI7
webp
cjxI3
webpz0
fixl
optipng
libpng
lodepng
fpnge
fpnge4
fpng-s
fpng
qoi

fpnge2

Compression speed, wrt lodepng, higher is better (log scale)

0.00261

0.01

0.0524

0.0788

0.261

| gl‘

[
0.474

4.07

|

|

N
2

2

w
N}

-
o
w

-
-
o

100

https://xkcd.com/1162/

Lossless compression density in bpp (smaller is better)
[small photobpp | screenshots bpp

CjxI9E3 W

cjxI7 h’* 1.75

10.01
10.10

10.33
10.87

webp W

10.87
11.83

cjxI3 2.26

10.51
11.63

webpz0 2.65

1217
13.02

fixI

optipng

12.33

13.52

libpng

lodepng

fpnge
fpnge4

fpng-s

14.92

15.14

15.20

14.80
15.80

fpng

15.58
16.27

qoi

16.57
17.10

fpnge2

16.49

large photo bpp

Compression density, wrt lodepng, lower is better (aggregate, zoomed)

CjXI9E3
cjxl7
webp
cjxI3

webpz0

fixI
optipng -5%
libpng -4%

lodepng (02

fonge 4%
fpnge4
fpng-s
fpng

qoi

fpnge2 18%

-40% -20% 0% 20%

relative speed

100

10

0.1

0.01

e fpnge2

10%

Density vs speed, compared to lodepng (aggregate)

e fpnge4d
e fpnge

0%

el
OC

e fjxl

® webpz0

oA
Cpng

libpng

@ optipng

-10% -20%
relative density

e cjxl7

-30%

® CjxI9E3

FJXL

FJXL - JPEG XL lossless subset overview

- (optional) Palettization is applied

- Image is divided into 256x256 tiles

- Color transform (YCoCqg) applied (8 -> 9 bit range)

- Channels are separated into planes

- Prediction is applied (ClampedGradient) (9 -> 10 bit range)

- LZ77 can be applied (in this encoder, just run-length encoding)

- “Hybrid Ulnt encoding” is applied on raw symbols, split into symbol + bits
- Prefix coding is applied on symbols

Input is 8-bit, but the added bits require switching to 16-bit arithmetic. On AVX2,
that's 16 integers per vector.

FJXL - palette detection

- Hash table with 65k possible entries

- Any collision -> no palette

- Palette is sorted by luma to make the prediction still work well
- At most 256 palette entries are used

On non-palette-friendly images, this fails quickly (birthday paradox says after ~256
distinct pixels).

On palette images, encoding 1 channel rather than 4 more than compensates the
cost of detection.

FJXL - prediction

ClampedGradient predictor: TL T
L

- predicts a pixel with an estimate of the gradient: T + L - TL
- ... but without extrapolation, i.e. clamped to the [min(T, L, TL); max(T, L, TL)]
range

On the encoder side, simple to (auto)vectorize.

FJXL - RLE SIMD-fication

Very simple SIMD approach to run length encoding:

- if the current vector of values is identical to the last value from the previous
vector, increment run count and skip producing output

- if not, emit a LZ77 copy length + distance symbol (if run length > 0) and
encode the current vector raw

FJXL - Hybrid Ulnt Encoding

Given a number (written in base 2)

1b_.b b.b

p-1-p-2"""~170
we split it into a symbol that represents p (or a special symbol that represents 0) +
p raw bits “bp_1bp_2. ..b,b,’

This requires a fast-log2 operation; __ builtin_clz() does the job, can be emulated
for AVX2 vectors with some table lookups in a 16-entry table (vpshufb)

FJXL - Prefix coding

Usual prefix coding. Optimization: sample a few parts of the image (at random) to
produce an image-adapted table.

We only have <16 symbols. We can SIMDfy prefix coding by doing table lookups
with vpshufb.

We still need to concatenate all the Huffman and raw bits into a single bit stream.
This could be done with 32 calls to a PutBits function, but SIMDfication provides a
significant speed up: can be done with a sequence of bitwise operations to reduce
to just 4 PutBits.

FPNGE

FPNGE - PNG vs JXL differences

- No division in tiles
- No color transforms
- One of 5 predictors (“filters”) is chosen per row

- Channels are interleaved, not split into planes

Makes RLE somewhat less effective
Requires masking to disable unused channels, or specialized code paths

- All operations are byte-wise, with wraparound
Can use 8-bit integers, i.e. 32 integers per vector

- No Hybrid Uint Encoding - Huffman raw alphabet has 256 symbols
- Two different checksums of image data (Adler32 and CRC32)

FPNGE - PNG filters

- Filter 0: noop c b
- Filter 1: subtract a a
- Filter 2: subtract b

- Filter 3: subtract (a+b)/2

- Filter 4: subtract the Paeth predictor

p = at+b-c;

pa =|p-al;
pb = |p - b|;
pc =|p-cl;

if pa <= pb && pa <= pc PAETH = a;
else if pb <= pc PAETH = b;
else PAETH =c;

FPNGE - Paeth SIMDfication

Intermediate quantities for Paeth do not use wraparound: problematic for SIMD.

Alternative, equivalent formulation with just 8-bit intermediate quantities:

bc=Db-c;

ca=c-a,

pa=c<b?bc:-bc;

pb=a<c?ca:-ca;
pc=(a<c)==(c<b)?(bc>=ca?bc-ca:ca-bc):255;
PAETH =pa<=pb & & pa<=pc?a:pb<=pc?b:c;

FPNGE - Filter choice

- libpng: filter that minimizes the sum of absolute values of residuals for the row
- fpnge: filter that minimizes the bit cost of the row (doing full mock-encodes)

- fpnge4: always use the Paeth predictor

- fpnge2: always use the Top predictor

FPNGE - Huffman coding

Fast Huffman coding in FJXL works because we have at most 16 raw symbols,
which fit in a single vector pair.

For PNG, we can pick a custom Huffman table so that:

- Symbols [0, 16) (0000xxxx in binary) have their own Huffman code

- Symbols [240, 256) (1111xxxx in binary) have their own Huffman code

- All other symbols (yyyyxxxx in binary) have LUT[yyyy]xxxx as their Huffman
code, i.e. lowest 4 bits are copied as-is.

The Huffman table can then fit in 3 vector pairs, which still allows fast lookups with
vpshufb + vpblendvb.

Code

Code

FJXL: https://qgithub.com/libjxl/libjxl/tree/main/experimental/fast lossless

FPNGE: https://qithub.com/veluca93/fpnge

Both are single-file encoders (+ main file).
FJXL has AVX2, ARM NEON and plain-C++ implementations.
FPNGE is AVX2 only.

https://github.com/libjxl/libjxl/tree/main/experimental/fast_lossless
https://github.com/veluca93/fpnge

Questions?

